![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismbf1 | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 25145 and ismbfcn 25146 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
ismbf1 | ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq2 5859 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (ℜ ∘ 𝑓) = (ℜ ∘ 𝐹)) | |
2 | 1 | cnveqd 5876 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡(ℜ ∘ 𝑓) = ◡(ℜ ∘ 𝐹)) |
3 | 2 | imaeq1d 6059 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡(ℜ ∘ 𝑓) “ 𝑥) = (◡(ℜ ∘ 𝐹) “ 𝑥)) |
4 | 3 | eleq1d 2819 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
5 | coeq2 5859 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (ℑ ∘ 𝑓) = (ℑ ∘ 𝐹)) | |
6 | 5 | cnveqd 5876 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡(ℑ ∘ 𝑓) = ◡(ℑ ∘ 𝐹)) |
7 | 6 | imaeq1d 6059 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡(ℑ ∘ 𝑓) “ 𝑥) = (◡(ℑ ∘ 𝐹) “ 𝑥)) |
8 | 7 | eleq1d 2819 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
9 | 4, 8 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → (((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
10 | 9 | ralbidv 3178 | . 2 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
11 | df-mbf 25136 | . 2 ⊢ MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} | |
12 | 10, 11 | elrab2 3687 | 1 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ◡ccnv 5676 dom cdm 5677 ran crn 5678 “ cima 5680 ∘ ccom 5681 (class class class)co 7409 ↑pm cpm 8821 ℂcc 11108 ℝcr 11109 (,)cioo 13324 ℜcre 15044 ℑcim 15045 volcvol 24980 MblFncmbf 25131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-mbf 25136 |
This theorem is referenced by: mbff 25142 mbfdm 25143 ismbf 25145 ismbfcn 25146 mbfconst 25150 mbfres 25161 cncombf 25175 cnmbf 25176 mbfdmssre 44716 |
Copyright terms: Public domain | W3C validator |