MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf1 Structured version   Visualization version   GIF version

Theorem ismbf1 25532
Description: The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 25536 and ismbfcn 25537 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf1 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
Distinct variable group:   𝑥,𝐹

Proof of Theorem ismbf1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 coeq2 5825 . . . . . . 7 (𝑓 = 𝐹 → (ℜ ∘ 𝑓) = (ℜ ∘ 𝐹))
21cnveqd 5842 . . . . . 6 (𝑓 = 𝐹(ℜ ∘ 𝑓) = (ℜ ∘ 𝐹))
32imaeq1d 6033 . . . . 5 (𝑓 = 𝐹 → ((ℜ ∘ 𝑓) “ 𝑥) = ((ℜ ∘ 𝐹) “ 𝑥))
43eleq1d 2814 . . . 4 (𝑓 = 𝐹 → (((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
5 coeq2 5825 . . . . . . 7 (𝑓 = 𝐹 → (ℑ ∘ 𝑓) = (ℑ ∘ 𝐹))
65cnveqd 5842 . . . . . 6 (𝑓 = 𝐹(ℑ ∘ 𝑓) = (ℑ ∘ 𝐹))
76imaeq1d 6033 . . . . 5 (𝑓 = 𝐹 → ((ℑ ∘ 𝑓) “ 𝑥) = ((ℑ ∘ 𝐹) “ 𝑥))
87eleq1d 2814 . . . 4 (𝑓 = 𝐹 → (((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))
94, 8anbi12d 632 . . 3 (𝑓 = 𝐹 → ((((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
109ralbidv 3157 . 2 (𝑓 = 𝐹 → (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
11 df-mbf 25527 . 2 MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)}
1210, 11elrab2 3665 1 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  ccom 5645  (class class class)co 7390  pm cpm 8803  cc 11073  cr 11074  (,)cioo 13313  cre 15070  cim 15071  volcvol 25371  MblFncmbf 25522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-mbf 25527
This theorem is referenced by:  mbff  25533  mbfdm  25534  ismbf  25536  ismbfcn  25537  mbfconst  25541  mbfres  25552  cncombf  25566  cnmbf  25567  mbfdmssre  46005
  Copyright terms: Public domain W3C validator