![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismbf1 | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 25677 and ismbfcn 25678 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
ismbf1 | ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq2 5872 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (ℜ ∘ 𝑓) = (ℜ ∘ 𝐹)) | |
2 | 1 | cnveqd 5889 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡(ℜ ∘ 𝑓) = ◡(ℜ ∘ 𝐹)) |
3 | 2 | imaeq1d 6079 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡(ℜ ∘ 𝑓) “ 𝑥) = (◡(ℜ ∘ 𝐹) “ 𝑥)) |
4 | 3 | eleq1d 2824 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
5 | coeq2 5872 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (ℑ ∘ 𝑓) = (ℑ ∘ 𝐹)) | |
6 | 5 | cnveqd 5889 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡(ℑ ∘ 𝑓) = ◡(ℑ ∘ 𝐹)) |
7 | 6 | imaeq1d 6079 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡(ℑ ∘ 𝑓) “ 𝑥) = (◡(ℑ ∘ 𝐹) “ 𝑥)) |
8 | 7 | eleq1d 2824 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
9 | 4, 8 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → (((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
10 | 9 | ralbidv 3176 | . 2 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
11 | df-mbf 25668 | . 2 ⊢ MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} | |
12 | 10, 11 | elrab2 3698 | 1 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ◡ccnv 5688 dom cdm 5689 ran crn 5690 “ cima 5692 ∘ ccom 5693 (class class class)co 7431 ↑pm cpm 8866 ℂcc 11151 ℝcr 11152 (,)cioo 13384 ℜcre 15133 ℑcim 15134 volcvol 25512 MblFncmbf 25663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-mbf 25668 |
This theorem is referenced by: mbff 25674 mbfdm 25675 ismbf 25677 ismbfcn 25678 mbfconst 25682 mbfres 25693 cncombf 25707 cnmbf 25708 mbfdmssre 45956 |
Copyright terms: Public domain | W3C validator |