MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf1 Structured version   Visualization version   GIF version

Theorem ismbf1 25678
Description: The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 25682 and ismbfcn 25683 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf1 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
Distinct variable group:   𝑥,𝐹

Proof of Theorem ismbf1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 coeq2 5883 . . . . . . 7 (𝑓 = 𝐹 → (ℜ ∘ 𝑓) = (ℜ ∘ 𝐹))
21cnveqd 5900 . . . . . 6 (𝑓 = 𝐹(ℜ ∘ 𝑓) = (ℜ ∘ 𝐹))
32imaeq1d 6088 . . . . 5 (𝑓 = 𝐹 → ((ℜ ∘ 𝑓) “ 𝑥) = ((ℜ ∘ 𝐹) “ 𝑥))
43eleq1d 2829 . . . 4 (𝑓 = 𝐹 → (((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
5 coeq2 5883 . . . . . . 7 (𝑓 = 𝐹 → (ℑ ∘ 𝑓) = (ℑ ∘ 𝐹))
65cnveqd 5900 . . . . . 6 (𝑓 = 𝐹(ℑ ∘ 𝑓) = (ℑ ∘ 𝐹))
76imaeq1d 6088 . . . . 5 (𝑓 = 𝐹 → ((ℑ ∘ 𝑓) “ 𝑥) = ((ℑ ∘ 𝐹) “ 𝑥))
87eleq1d 2829 . . . 4 (𝑓 = 𝐹 → (((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))
94, 8anbi12d 631 . . 3 (𝑓 = 𝐹 → ((((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
109ralbidv 3184 . 2 (𝑓 = 𝐹 → (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
11 df-mbf 25673 . 2 MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)}
1210, 11elrab2 3711 1 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  ccom 5704  (class class class)co 7448  pm cpm 8885  cc 11182  cr 11183  (,)cioo 13407  cre 15146  cim 15147  volcvol 25517  MblFncmbf 25668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-mbf 25673
This theorem is referenced by:  mbff  25679  mbfdm  25680  ismbf  25682  ismbfcn  25683  mbfconst  25687  mbfres  25698  cncombf  25712  cnmbf  25713  mbfdmssre  45921
  Copyright terms: Public domain W3C validator