| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismbf1 | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 25551 and ismbfcn 25552 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| ismbf1 | ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq2 5793 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (ℜ ∘ 𝑓) = (ℜ ∘ 𝐹)) | |
| 2 | 1 | cnveqd 5810 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡(ℜ ∘ 𝑓) = ◡(ℜ ∘ 𝐹)) |
| 3 | 2 | imaeq1d 6003 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡(ℜ ∘ 𝑓) “ 𝑥) = (◡(ℜ ∘ 𝐹) “ 𝑥)) |
| 4 | 3 | eleq1d 2816 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
| 5 | coeq2 5793 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (ℑ ∘ 𝑓) = (ℑ ∘ 𝐹)) | |
| 6 | 5 | cnveqd 5810 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡(ℑ ∘ 𝑓) = ◡(ℑ ∘ 𝐹)) |
| 7 | 6 | imaeq1d 6003 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡(ℑ ∘ 𝑓) “ 𝑥) = (◡(ℑ ∘ 𝐹) “ 𝑥)) |
| 8 | 7 | eleq1d 2816 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
| 9 | 4, 8 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → (((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
| 10 | 9 | ralbidv 3155 | . 2 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
| 11 | df-mbf 25542 | . 2 ⊢ MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} | |
| 12 | 10, 11 | elrab2 3645 | 1 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ◡ccnv 5610 dom cdm 5611 ran crn 5612 “ cima 5614 ∘ ccom 5615 (class class class)co 7341 ↑pm cpm 8746 ℂcc 10999 ℝcr 11000 (,)cioo 13240 ℜcre 14999 ℑcim 15000 volcvol 25386 MblFncmbf 25537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-mbf 25542 |
| This theorem is referenced by: mbff 25548 mbfdm 25549 ismbf 25551 ismbfcn 25552 mbfconst 25556 mbfres 25567 cncombf 25581 cnmbf 25582 mbfdmssre 46038 |
| Copyright terms: Public domain | W3C validator |