MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf1 Structured version   Visualization version   GIF version

Theorem ismbf1 25542
Description: The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 25546 and ismbfcn 25547 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf1 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
Distinct variable group:   𝑥,𝐹

Proof of Theorem ismbf1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 coeq2 5805 . . . . . . 7 (𝑓 = 𝐹 → (ℜ ∘ 𝑓) = (ℜ ∘ 𝐹))
21cnveqd 5822 . . . . . 6 (𝑓 = 𝐹(ℜ ∘ 𝑓) = (ℜ ∘ 𝐹))
32imaeq1d 6014 . . . . 5 (𝑓 = 𝐹 → ((ℜ ∘ 𝑓) “ 𝑥) = ((ℜ ∘ 𝐹) “ 𝑥))
43eleq1d 2813 . . . 4 (𝑓 = 𝐹 → (((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
5 coeq2 5805 . . . . . . 7 (𝑓 = 𝐹 → (ℑ ∘ 𝑓) = (ℑ ∘ 𝐹))
65cnveqd 5822 . . . . . 6 (𝑓 = 𝐹(ℑ ∘ 𝑓) = (ℑ ∘ 𝐹))
76imaeq1d 6014 . . . . 5 (𝑓 = 𝐹 → ((ℑ ∘ 𝑓) “ 𝑥) = ((ℑ ∘ 𝐹) “ 𝑥))
87eleq1d 2813 . . . 4 (𝑓 = 𝐹 → (((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))
94, 8anbi12d 632 . . 3 (𝑓 = 𝐹 → ((((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
109ralbidv 3152 . 2 (𝑓 = 𝐹 → (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
11 df-mbf 25537 . 2 MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)}
1210, 11elrab2 3653 1 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ccnv 5622  dom cdm 5623  ran crn 5624  cima 5626  ccom 5627  (class class class)co 7353  pm cpm 8761  cc 11026  cr 11027  (,)cioo 13267  cre 15023  cim 15024  volcvol 25381  MblFncmbf 25532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-mbf 25537
This theorem is referenced by:  mbff  25543  mbfdm  25544  ismbf  25546  ismbfcn  25547  mbfconst  25551  mbfres  25562  cncombf  25576  cnmbf  25577  mbfdmssre  46001
  Copyright terms: Public domain W3C validator