| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismbf1 | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 25536 and ismbfcn 25537 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| ismbf1 | ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq2 5825 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (ℜ ∘ 𝑓) = (ℜ ∘ 𝐹)) | |
| 2 | 1 | cnveqd 5842 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡(ℜ ∘ 𝑓) = ◡(ℜ ∘ 𝐹)) |
| 3 | 2 | imaeq1d 6033 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡(ℜ ∘ 𝑓) “ 𝑥) = (◡(ℜ ∘ 𝐹) “ 𝑥)) |
| 4 | 3 | eleq1d 2814 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
| 5 | coeq2 5825 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (ℑ ∘ 𝑓) = (ℑ ∘ 𝐹)) | |
| 6 | 5 | cnveqd 5842 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡(ℑ ∘ 𝑓) = ◡(ℑ ∘ 𝐹)) |
| 7 | 6 | imaeq1d 6033 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡(ℑ ∘ 𝑓) “ 𝑥) = (◡(ℑ ∘ 𝐹) “ 𝑥)) |
| 8 | 7 | eleq1d 2814 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
| 9 | 4, 8 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → (((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
| 10 | 9 | ralbidv 3157 | . 2 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
| 11 | df-mbf 25527 | . 2 ⊢ MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} | |
| 12 | 10, 11 | elrab2 3665 | 1 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ◡ccnv 5640 dom cdm 5641 ran crn 5642 “ cima 5644 ∘ ccom 5645 (class class class)co 7390 ↑pm cpm 8803 ℂcc 11073 ℝcr 11074 (,)cioo 13313 ℜcre 15070 ℑcim 15071 volcvol 25371 MblFncmbf 25522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-mbf 25527 |
| This theorem is referenced by: mbff 25533 mbfdm 25534 ismbf 25536 ismbfcn 25537 mbfconst 25541 mbfres 25552 cncombf 25566 cnmbf 25567 mbfdmssre 46005 |
| Copyright terms: Public domain | W3C validator |