Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismbf1 | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 24841 and ismbfcn 24842 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
ismbf1 | ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq2 5780 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (ℜ ∘ 𝑓) = (ℜ ∘ 𝐹)) | |
2 | 1 | cnveqd 5797 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡(ℜ ∘ 𝑓) = ◡(ℜ ∘ 𝐹)) |
3 | 2 | imaeq1d 5978 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡(ℜ ∘ 𝑓) “ 𝑥) = (◡(ℜ ∘ 𝐹) “ 𝑥)) |
4 | 3 | eleq1d 2821 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
5 | coeq2 5780 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (ℑ ∘ 𝑓) = (ℑ ∘ 𝐹)) | |
6 | 5 | cnveqd 5797 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡(ℑ ∘ 𝑓) = ◡(ℑ ∘ 𝐹)) |
7 | 6 | imaeq1d 5978 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡(ℑ ∘ 𝑓) “ 𝑥) = (◡(ℑ ∘ 𝐹) “ 𝑥)) |
8 | 7 | eleq1d 2821 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
9 | 4, 8 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → (((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
10 | 9 | ralbidv 3171 | . 2 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
11 | df-mbf 24832 | . 2 ⊢ MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} | |
12 | 10, 11 | elrab2 3632 | 1 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ◡ccnv 5599 dom cdm 5600 ran crn 5601 “ cima 5603 ∘ ccom 5604 (class class class)co 7307 ↑pm cpm 8647 ℂcc 10919 ℝcr 10920 (,)cioo 13129 ℜcre 14857 ℑcim 14858 volcvol 24676 MblFncmbf 24827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-mbf 24832 |
This theorem is referenced by: mbff 24838 mbfdm 24839 ismbf 24841 ismbfcn 24842 mbfconst 24846 mbfres 24857 cncombf 24871 cnmbf 24872 mbfdmssre 43770 |
Copyright terms: Public domain | W3C validator |