Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mbfm Structured version   Visualization version   GIF version

Definition df-mbfm 32197
Description: Define the measurable function builder, which generates the set of measurable functions from a measurable space to another one. Here, the measurable spaces are given using their sigma-algebras 𝑠 and 𝑡, and the spaces themselves are recovered by 𝑠 and 𝑡.

Note the similarities between the definition of measurable functions in measure theory, and of continuous functions in topology.

This is the definition for the generic measure theory. For the specific case of functions from to , see df-mbf 24764. (Contributed by Thierry Arnoux, 23-Jan-2017.)

Assertion
Ref Expression
df-mbfm MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
Distinct variable group:   𝑓,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-mbfm
StepHypRef Expression
1 cmbfm 32196 . 2 class MblFnM
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 csiga 32055 . . . . 5 class sigAlgebra
54crn 5589 . . . 4 class ran sigAlgebra
65cuni 4844 . . 3 class ran sigAlgebra
7 vf . . . . . . . . 9 setvar 𝑓
87cv 1540 . . . . . . . 8 class 𝑓
98ccnv 5587 . . . . . . 7 class 𝑓
10 vx . . . . . . . 8 setvar 𝑥
1110cv 1540 . . . . . . 7 class 𝑥
129, 11cima 5591 . . . . . 6 class (𝑓𝑥)
132cv 1540 . . . . . 6 class 𝑠
1412, 13wcel 2109 . . . . 5 wff (𝑓𝑥) ∈ 𝑠
153cv 1540 . . . . 5 class 𝑡
1614, 10, 15wral 3065 . . . 4 wff 𝑥𝑡 (𝑓𝑥) ∈ 𝑠
1715cuni 4844 . . . . 5 class 𝑡
1813cuni 4844 . . . . 5 class 𝑠
19 cmap 8589 . . . . 5 class m
2017, 18, 19co 7268 . . . 4 class ( 𝑡m 𝑠)
2116, 7, 20crab 3069 . . 3 class {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠}
222, 3, 6, 6, 21cmpo 7270 . 2 class (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
231, 22wceq 1541 1 wff MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
Colors of variables: wff setvar class
This definition is referenced by:  ismbfm  32198  elunirnmbfm  32199
  Copyright terms: Public domain W3C validator