Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mbfm Structured version   Visualization version   GIF version

Definition df-mbfm 33859
Description: Define the measurable function builder, which generates the set of measurable functions from a measurable space to another one. Here, the measurable spaces are given using their sigma-algebras 𝑠 and 𝑡, and the spaces themselves are recovered by 𝑠 and 𝑡.

Note the similarities between the definition of measurable functions in measure theory, and of continuous functions in topology.

This is the definition for the generic measure theory. For the specific case of functions from to , see df-mbf 25541. (Contributed by Thierry Arnoux, 23-Jan-2017.)

Assertion
Ref Expression
df-mbfm MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
Distinct variable group:   𝑓,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-mbfm
StepHypRef Expression
1 cmbfm 33858 . 2 class MblFnM
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 csiga 33717 . . . . 5 class sigAlgebra
54crn 5673 . . . 4 class ran sigAlgebra
65cuni 4903 . . 3 class ran sigAlgebra
7 vf . . . . . . . . 9 setvar 𝑓
87cv 1533 . . . . . . . 8 class 𝑓
98ccnv 5671 . . . . . . 7 class 𝑓
10 vx . . . . . . . 8 setvar 𝑥
1110cv 1533 . . . . . . 7 class 𝑥
129, 11cima 5675 . . . . . 6 class (𝑓𝑥)
132cv 1533 . . . . . 6 class 𝑠
1412, 13wcel 2099 . . . . 5 wff (𝑓𝑥) ∈ 𝑠
153cv 1533 . . . . 5 class 𝑡
1614, 10, 15wral 3056 . . . 4 wff 𝑥𝑡 (𝑓𝑥) ∈ 𝑠
1715cuni 4903 . . . . 5 class 𝑡
1813cuni 4903 . . . . 5 class 𝑠
19 cmap 8838 . . . . 5 class m
2017, 18, 19co 7414 . . . 4 class ( 𝑡m 𝑠)
2116, 7, 20crab 3427 . . 3 class {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠}
222, 3, 6, 6, 21cmpo 7416 . 2 class (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
231, 22wceq 1534 1 wff MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
Colors of variables: wff setvar class
This definition is referenced by:  ismbfm  33860  elunirnmbfm  33861
  Copyright terms: Public domain W3C validator