| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-mbfm | Structured version Visualization version GIF version | ||
| Description: Define the measurable
function builder, which generates the set of
measurable functions from a measurable space to another one. Here, the
measurable spaces are given using their sigma-algebras 𝑠 and
𝑡,
and the spaces themselves are recovered by ∪ 𝑠 and ∪ 𝑡.
Note the similarities between the definition of measurable functions in measure theory, and of continuous functions in topology. This is the definition for the generic measure theory. For the specific case of functions from ℝ to ℂ, see df-mbf 25547. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-mbfm | ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmbfm 34262 | . 2 class MblFnM | |
| 2 | vs | . . 3 setvar 𝑠 | |
| 3 | vt | . . 3 setvar 𝑡 | |
| 4 | csiga 34121 | . . . . 5 class sigAlgebra | |
| 5 | 4 | crn 5615 | . . . 4 class ran sigAlgebra |
| 6 | 5 | cuni 4856 | . . 3 class ∪ ran sigAlgebra |
| 7 | vf | . . . . . . . . 9 setvar 𝑓 | |
| 8 | 7 | cv 1540 | . . . . . . . 8 class 𝑓 |
| 9 | 8 | ccnv 5613 | . . . . . . 7 class ◡𝑓 |
| 10 | vx | . . . . . . . 8 setvar 𝑥 | |
| 11 | 10 | cv 1540 | . . . . . . 7 class 𝑥 |
| 12 | 9, 11 | cima 5617 | . . . . . 6 class (◡𝑓 “ 𝑥) |
| 13 | 2 | cv 1540 | . . . . . 6 class 𝑠 |
| 14 | 12, 13 | wcel 2111 | . . . . 5 wff (◡𝑓 “ 𝑥) ∈ 𝑠 |
| 15 | 3 | cv 1540 | . . . . 5 class 𝑡 |
| 16 | 14, 10, 15 | wral 3047 | . . . 4 wff ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠 |
| 17 | 15 | cuni 4856 | . . . . 5 class ∪ 𝑡 |
| 18 | 13 | cuni 4856 | . . . . 5 class ∪ 𝑠 |
| 19 | cmap 8750 | . . . . 5 class ↑m | |
| 20 | 17, 18, 19 | co 7346 | . . . 4 class (∪ 𝑡 ↑m ∪ 𝑠) |
| 21 | 16, 7, 20 | crab 3395 | . . 3 class {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} |
| 22 | 2, 3, 6, 6, 21 | cmpo 7348 | . 2 class (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) |
| 23 | 1, 22 | wceq 1541 | 1 wff MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ismbfm 34264 elunirnmbfm 34265 |
| Copyright terms: Public domain | W3C validator |