Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mbfm Structured version   Visualization version   GIF version

Definition df-mbfm 34231
Description: Define the measurable function builder, which generates the set of measurable functions from a measurable space to another one. Here, the measurable spaces are given using their sigma-algebras 𝑠 and 𝑡, and the spaces themselves are recovered by 𝑠 and 𝑡.

Note the similarities between the definition of measurable functions in measure theory, and of continuous functions in topology.

This is the definition for the generic measure theory. For the specific case of functions from to , see df-mbf 25668. (Contributed by Thierry Arnoux, 23-Jan-2017.)

Assertion
Ref Expression
df-mbfm MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
Distinct variable group:   𝑓,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-mbfm
StepHypRef Expression
1 cmbfm 34230 . 2 class MblFnM
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 csiga 34089 . . . . 5 class sigAlgebra
54crn 5690 . . . 4 class ran sigAlgebra
65cuni 4912 . . 3 class ran sigAlgebra
7 vf . . . . . . . . 9 setvar 𝑓
87cv 1536 . . . . . . . 8 class 𝑓
98ccnv 5688 . . . . . . 7 class 𝑓
10 vx . . . . . . . 8 setvar 𝑥
1110cv 1536 . . . . . . 7 class 𝑥
129, 11cima 5692 . . . . . 6 class (𝑓𝑥)
132cv 1536 . . . . . 6 class 𝑠
1412, 13wcel 2106 . . . . 5 wff (𝑓𝑥) ∈ 𝑠
153cv 1536 . . . . 5 class 𝑡
1614, 10, 15wral 3059 . . . 4 wff 𝑥𝑡 (𝑓𝑥) ∈ 𝑠
1715cuni 4912 . . . . 5 class 𝑡
1813cuni 4912 . . . . 5 class 𝑠
19 cmap 8865 . . . . 5 class m
2017, 18, 19co 7431 . . . 4 class ( 𝑡m 𝑠)
2116, 7, 20crab 3433 . . 3 class {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠}
222, 3, 6, 6, 21cmpo 7433 . 2 class (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
231, 22wceq 1537 1 wff MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
Colors of variables: wff setvar class
This definition is referenced by:  ismbfm  34232  elunirnmbfm  34233
  Copyright terms: Public domain W3C validator