| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-mbfm | Structured version Visualization version GIF version | ||
| Description: Define the measurable
function builder, which generates the set of
measurable functions from a measurable space to another one. Here, the
measurable spaces are given using their sigma-algebras 𝑠 and
𝑡,
and the spaces themselves are recovered by ∪ 𝑠 and ∪ 𝑡.
Note the similarities between the definition of measurable functions in measure theory, and of continuous functions in topology. This is the definition for the generic measure theory. For the specific case of functions from ℝ to ℂ, see df-mbf 25654. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-mbfm | ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmbfm 34250 | . 2 class MblFnM | |
| 2 | vs | . . 3 setvar 𝑠 | |
| 3 | vt | . . 3 setvar 𝑡 | |
| 4 | csiga 34109 | . . . . 5 class sigAlgebra | |
| 5 | 4 | crn 5686 | . . . 4 class ran sigAlgebra |
| 6 | 5 | cuni 4907 | . . 3 class ∪ ran sigAlgebra |
| 7 | vf | . . . . . . . . 9 setvar 𝑓 | |
| 8 | 7 | cv 1539 | . . . . . . . 8 class 𝑓 |
| 9 | 8 | ccnv 5684 | . . . . . . 7 class ◡𝑓 |
| 10 | vx | . . . . . . . 8 setvar 𝑥 | |
| 11 | 10 | cv 1539 | . . . . . . 7 class 𝑥 |
| 12 | 9, 11 | cima 5688 | . . . . . 6 class (◡𝑓 “ 𝑥) |
| 13 | 2 | cv 1539 | . . . . . 6 class 𝑠 |
| 14 | 12, 13 | wcel 2108 | . . . . 5 wff (◡𝑓 “ 𝑥) ∈ 𝑠 |
| 15 | 3 | cv 1539 | . . . . 5 class 𝑡 |
| 16 | 14, 10, 15 | wral 3061 | . . . 4 wff ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠 |
| 17 | 15 | cuni 4907 | . . . . 5 class ∪ 𝑡 |
| 18 | 13 | cuni 4907 | . . . . 5 class ∪ 𝑠 |
| 19 | cmap 8866 | . . . . 5 class ↑m | |
| 20 | 17, 18, 19 | co 7431 | . . . 4 class (∪ 𝑡 ↑m ∪ 𝑠) |
| 21 | 16, 7, 20 | crab 3436 | . . 3 class {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} |
| 22 | 2, 3, 6, 6, 21 | cmpo 7433 | . 2 class (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) |
| 23 | 1, 22 | wceq 1540 | 1 wff MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ismbfm 34252 elunirnmbfm 34253 |
| Copyright terms: Public domain | W3C validator |