Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mbfm Structured version   Visualization version   GIF version

Definition df-mbfm 34263
Description: Define the measurable function builder, which generates the set of measurable functions from a measurable space to another one. Here, the measurable spaces are given using their sigma-algebras 𝑠 and 𝑡, and the spaces themselves are recovered by 𝑠 and 𝑡.

Note the similarities between the definition of measurable functions in measure theory, and of continuous functions in topology.

This is the definition for the generic measure theory. For the specific case of functions from to , see df-mbf 25547. (Contributed by Thierry Arnoux, 23-Jan-2017.)

Assertion
Ref Expression
df-mbfm MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
Distinct variable group:   𝑓,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-mbfm
StepHypRef Expression
1 cmbfm 34262 . 2 class MblFnM
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 csiga 34121 . . . . 5 class sigAlgebra
54crn 5615 . . . 4 class ran sigAlgebra
65cuni 4856 . . 3 class ran sigAlgebra
7 vf . . . . . . . . 9 setvar 𝑓
87cv 1540 . . . . . . . 8 class 𝑓
98ccnv 5613 . . . . . . 7 class 𝑓
10 vx . . . . . . . 8 setvar 𝑥
1110cv 1540 . . . . . . 7 class 𝑥
129, 11cima 5617 . . . . . 6 class (𝑓𝑥)
132cv 1540 . . . . . 6 class 𝑠
1412, 13wcel 2111 . . . . 5 wff (𝑓𝑥) ∈ 𝑠
153cv 1540 . . . . 5 class 𝑡
1614, 10, 15wral 3047 . . . 4 wff 𝑥𝑡 (𝑓𝑥) ∈ 𝑠
1715cuni 4856 . . . . 5 class 𝑡
1813cuni 4856 . . . . 5 class 𝑠
19 cmap 8750 . . . . 5 class m
2017, 18, 19co 7346 . . . 4 class ( 𝑡m 𝑠)
2116, 7, 20crab 3395 . . 3 class {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠}
222, 3, 6, 6, 21cmpo 7348 . 2 class (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
231, 22wceq 1541 1 wff MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
Colors of variables: wff setvar class
This definition is referenced by:  ismbfm  34264  elunirnmbfm  34265
  Copyright terms: Public domain W3C validator