Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismbfm | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 24380. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
Ref | Expression |
---|---|
ismbfm.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
ismbfm.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
Ref | Expression |
---|---|
ismbfm | ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbfm.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | ismbfm.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
3 | unieq 4807 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
4 | 3 | oveq2d 7186 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∪ 𝑡 ↑m ∪ 𝑠) = (∪ 𝑡 ↑m ∪ 𝑆)) |
5 | eleq2 2821 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((◡𝑓 “ 𝑥) ∈ 𝑠 ↔ (◡𝑓 “ 𝑥) ∈ 𝑆)) | |
6 | 5 | ralbidv 3109 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆)) |
7 | 4, 6 | rabeqbidv 3387 | . . . . 5 ⊢ (𝑠 = 𝑆 → {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} = {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
8 | unieq 4807 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → ∪ 𝑡 = ∪ 𝑇) | |
9 | 8 | oveq1d 7185 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∪ 𝑡 ↑m ∪ 𝑆) = (∪ 𝑇 ↑m ∪ 𝑆)) |
10 | raleq 3310 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆)) | |
11 | 9, 10 | rabeqbidv 3387 | . . . . 5 ⊢ (𝑡 = 𝑇 → {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆} = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
12 | df-mbfm 31788 | . . . . 5 ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | |
13 | ovex 7203 | . . . . . 6 ⊢ (∪ 𝑇 ↑m ∪ 𝑆) ∈ V | |
14 | 13 | rabex 5200 | . . . . 5 ⊢ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆} ∈ V |
15 | 7, 11, 12, 14 | ovmpo 7325 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆MblFnM𝑇) = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
16 | 1, 2, 15 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝑆MblFnM𝑇) = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
17 | 16 | eleq2d 2818 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆})) |
18 | cnveq 5716 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
19 | 18 | imaeq1d 5902 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ 𝑥) = (◡𝐹 “ 𝑥)) |
20 | 19 | eleq1d 2817 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ 𝑥) ∈ 𝑆 ↔ (◡𝐹 “ 𝑥) ∈ 𝑆)) |
21 | 20 | ralbidv 3109 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
22 | 21 | elrab 3588 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆} ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
23 | 17, 22 | bitrdi 290 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 {crab 3057 ∪ cuni 4796 ◡ccnv 5524 ran crn 5526 “ cima 5528 (class class class)co 7170 ↑m cmap 8437 sigAlgebracsiga 31646 MblFnMcmbfm 31787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-mbfm 31788 |
This theorem is referenced by: elunirnmbfm 31790 mbfmf 31792 isanmbfm 31793 mbfmcnvima 31794 mbfmcst 31796 1stmbfm 31797 2ndmbfm 31798 imambfm 31799 mbfmco 31801 elmbfmvol2 31804 mbfmcnt 31805 sibfof 31877 isrrvv 31980 |
Copyright terms: Public domain | W3C validator |