![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismbfm | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 25377. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
Ref | Expression |
---|---|
ismbfm.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
ismbfm.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
Ref | Expression |
---|---|
ismbfm | ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbfm.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | ismbfm.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
3 | unieq 4918 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
4 | 3 | oveq2d 7427 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∪ 𝑡 ↑m ∪ 𝑠) = (∪ 𝑡 ↑m ∪ 𝑆)) |
5 | eleq2 2820 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((◡𝑓 “ 𝑥) ∈ 𝑠 ↔ (◡𝑓 “ 𝑥) ∈ 𝑆)) | |
6 | 5 | ralbidv 3175 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆)) |
7 | 4, 6 | rabeqbidv 3447 | . . . . 5 ⊢ (𝑠 = 𝑆 → {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} = {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
8 | unieq 4918 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → ∪ 𝑡 = ∪ 𝑇) | |
9 | 8 | oveq1d 7426 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∪ 𝑡 ↑m ∪ 𝑆) = (∪ 𝑇 ↑m ∪ 𝑆)) |
10 | raleq 3320 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆)) | |
11 | 9, 10 | rabeqbidv 3447 | . . . . 5 ⊢ (𝑡 = 𝑇 → {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆} = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
12 | df-mbfm 33546 | . . . . 5 ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | |
13 | ovex 7444 | . . . . . 6 ⊢ (∪ 𝑇 ↑m ∪ 𝑆) ∈ V | |
14 | 13 | rabex 5331 | . . . . 5 ⊢ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆} ∈ V |
15 | 7, 11, 12, 14 | ovmpo 7570 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆MblFnM𝑇) = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
16 | 1, 2, 15 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝑆MblFnM𝑇) = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
17 | 16 | eleq2d 2817 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆})) |
18 | cnveq 5872 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
19 | 18 | imaeq1d 6057 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ 𝑥) = (◡𝐹 “ 𝑥)) |
20 | 19 | eleq1d 2816 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ 𝑥) ∈ 𝑆 ↔ (◡𝐹 “ 𝑥) ∈ 𝑆)) |
21 | 20 | ralbidv 3175 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
22 | 21 | elrab 3682 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆} ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
23 | 17, 22 | bitrdi 286 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 {crab 3430 ∪ cuni 4907 ◡ccnv 5674 ran crn 5676 “ cima 5678 (class class class)co 7411 ↑m cmap 8822 sigAlgebracsiga 33404 MblFnMcmbfm 33545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-mbfm 33546 |
This theorem is referenced by: elunirnmbfm 33548 mbfmf 33550 mbfmcnvima 33552 mbfmcst 33556 1stmbfm 33557 2ndmbfm 33558 imambfm 33559 mbfmco 33561 elmbfmvol2 33564 mbfmcnt 33565 sibfof 33637 isrrvv 33740 |
Copyright terms: Public domain | W3C validator |