![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismbfm | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 25677. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
Ref | Expression |
---|---|
ismbfm.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
ismbfm.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
Ref | Expression |
---|---|
ismbfm | ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbfm.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | ismbfm.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
3 | unieq 4923 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
4 | 3 | oveq2d 7447 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∪ 𝑡 ↑m ∪ 𝑠) = (∪ 𝑡 ↑m ∪ 𝑆)) |
5 | eleq2 2828 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((◡𝑓 “ 𝑥) ∈ 𝑠 ↔ (◡𝑓 “ 𝑥) ∈ 𝑆)) | |
6 | 5 | ralbidv 3176 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆)) |
7 | 4, 6 | rabeqbidv 3452 | . . . . 5 ⊢ (𝑠 = 𝑆 → {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} = {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
8 | unieq 4923 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → ∪ 𝑡 = ∪ 𝑇) | |
9 | 8 | oveq1d 7446 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∪ 𝑡 ↑m ∪ 𝑆) = (∪ 𝑇 ↑m ∪ 𝑆)) |
10 | raleq 3321 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆)) | |
11 | 9, 10 | rabeqbidv 3452 | . . . . 5 ⊢ (𝑡 = 𝑇 → {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆} = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
12 | df-mbfm 34231 | . . . . 5 ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | |
13 | ovex 7464 | . . . . . 6 ⊢ (∪ 𝑇 ↑m ∪ 𝑆) ∈ V | |
14 | 13 | rabex 5345 | . . . . 5 ⊢ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆} ∈ V |
15 | 7, 11, 12, 14 | ovmpo 7593 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆MblFnM𝑇) = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
16 | 1, 2, 15 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆MblFnM𝑇) = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
17 | 16 | eleq2d 2825 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆})) |
18 | cnveq 5887 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
19 | 18 | imaeq1d 6079 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ 𝑥) = (◡𝐹 “ 𝑥)) |
20 | 19 | eleq1d 2824 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ 𝑥) ∈ 𝑆 ↔ (◡𝐹 “ 𝑥) ∈ 𝑆)) |
21 | 20 | ralbidv 3176 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
22 | 21 | elrab 3695 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆} ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
23 | 17, 22 | bitrdi 287 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ∪ cuni 4912 ◡ccnv 5688 ran crn 5690 “ cima 5692 (class class class)co 7431 ↑m cmap 8865 sigAlgebracsiga 34089 MblFnMcmbfm 34230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-mbfm 34231 |
This theorem is referenced by: elunirnmbfm 34233 mbfmf 34235 mbfmcnvima 34237 mbfmcst 34241 1stmbfm 34242 2ndmbfm 34243 imambfm 34244 mbfmco 34246 elmbfmvol2 34249 mbfmcnt 34250 sibfof 34322 isrrvv 34425 |
Copyright terms: Public domain | W3C validator |