![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismbfm | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 25390. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
Ref | Expression |
---|---|
ismbfm.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
ismbfm.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
Ref | Expression |
---|---|
ismbfm | ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbfm.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | ismbfm.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
3 | unieq 4919 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
4 | 3 | oveq2d 7428 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∪ 𝑡 ↑m ∪ 𝑠) = (∪ 𝑡 ↑m ∪ 𝑆)) |
5 | eleq2 2821 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((◡𝑓 “ 𝑥) ∈ 𝑠 ↔ (◡𝑓 “ 𝑥) ∈ 𝑆)) | |
6 | 5 | ralbidv 3176 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆)) |
7 | 4, 6 | rabeqbidv 3448 | . . . . 5 ⊢ (𝑠 = 𝑆 → {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} = {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
8 | unieq 4919 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → ∪ 𝑡 = ∪ 𝑇) | |
9 | 8 | oveq1d 7427 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∪ 𝑡 ↑m ∪ 𝑆) = (∪ 𝑇 ↑m ∪ 𝑆)) |
10 | raleq 3321 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆)) | |
11 | 9, 10 | rabeqbidv 3448 | . . . . 5 ⊢ (𝑡 = 𝑇 → {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑆} = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
12 | df-mbfm 33561 | . . . . 5 ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | |
13 | ovex 7445 | . . . . . 6 ⊢ (∪ 𝑇 ↑m ∪ 𝑆) ∈ V | |
14 | 13 | rabex 5332 | . . . . 5 ⊢ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆} ∈ V |
15 | 7, 11, 12, 14 | ovmpo 7571 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆MblFnM𝑇) = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
16 | 1, 2, 15 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑆MblFnM𝑇) = {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆}) |
17 | 16 | eleq2d 2818 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆})) |
18 | cnveq 5873 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
19 | 18 | imaeq1d 6058 | . . . . 5 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ 𝑥) = (◡𝐹 “ 𝑥)) |
20 | 19 | eleq1d 2817 | . . . 4 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ 𝑥) ∈ 𝑆 ↔ (◡𝐹 “ 𝑥) ∈ 𝑆)) |
21 | 20 | ralbidv 3176 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
22 | 21 | elrab 3683 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∣ ∀𝑥 ∈ 𝑇 (◡𝑓 “ 𝑥) ∈ 𝑆} ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
23 | 17, 22 | bitrdi 287 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 ∪ cuni 4908 ◡ccnv 5675 ran crn 5677 “ cima 5679 (class class class)co 7412 ↑m cmap 8826 sigAlgebracsiga 33419 MblFnMcmbfm 33560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-mbfm 33561 |
This theorem is referenced by: elunirnmbfm 33563 mbfmf 33565 mbfmcnvima 33567 mbfmcst 33571 1stmbfm 33572 2ndmbfm 33573 imambfm 33574 mbfmco 33576 elmbfmvol2 33579 mbfmcnt 33580 sibfof 33652 isrrvv 33755 |
Copyright terms: Public domain | W3C validator |