Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbfm Structured version   Visualization version   GIF version

Theorem ismbfm 31415
Description: The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 24163. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Hypotheses
Ref Expression
ismbfm.1 (𝜑𝑆 ran sigAlgebra)
ismbfm.2 (𝜑𝑇 ran sigAlgebra)
Assertion
Ref Expression
ismbfm (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ismbfm
Dummy variables 𝑓 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbfm.1 . . . 4 (𝜑𝑆 ran sigAlgebra)
2 ismbfm.2 . . . 4 (𝜑𝑇 ran sigAlgebra)
3 unieq 4845 . . . . . . 7 (𝑠 = 𝑆 𝑠 = 𝑆)
43oveq2d 7166 . . . . . 6 (𝑠 = 𝑆 → ( 𝑡m 𝑠) = ( 𝑡m 𝑆))
5 eleq2 2906 . . . . . . 7 (𝑠 = 𝑆 → ((𝑓𝑥) ∈ 𝑠 ↔ (𝑓𝑥) ∈ 𝑆))
65ralbidv 3202 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠 ↔ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆))
74, 6rabeqbidv 3491 . . . . 5 (𝑠 = 𝑆 → {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠} = {𝑓 ∈ ( 𝑡m 𝑆) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆})
8 unieq 4845 . . . . . . 7 (𝑡 = 𝑇 𝑡 = 𝑇)
98oveq1d 7165 . . . . . 6 (𝑡 = 𝑇 → ( 𝑡m 𝑆) = ( 𝑇m 𝑆))
10 raleq 3411 . . . . . 6 (𝑡 = 𝑇 → (∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆))
119, 10rabeqbidv 3491 . . . . 5 (𝑡 = 𝑇 → {𝑓 ∈ ( 𝑡m 𝑆) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆} = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
12 df-mbfm 31414 . . . . 5 MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
13 ovex 7183 . . . . . 6 ( 𝑇m 𝑆) ∈ V
1413rabex 5232 . . . . 5 {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆} ∈ V
157, 11, 12, 14ovmpo 7304 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆MblFnM𝑇) = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
161, 2, 15syl2anc 584 . . 3 (𝜑 → (𝑆MblFnM𝑇) = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
1716eleq2d 2903 . 2 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ 𝐹 ∈ {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆}))
18 cnveq 5743 . . . . . 6 (𝑓 = 𝐹𝑓 = 𝐹)
1918imaeq1d 5927 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
2019eleq1d 2902 . . . 4 (𝑓 = 𝐹 → ((𝑓𝑥) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
2120ralbidv 3202 . . 3 (𝑓 = 𝐹 → (∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
2221elrab 3684 . 2 (𝐹 ∈ {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆} ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
2317, 22syl6bb 288 1 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3143  {crab 3147   cuni 4837  ccnv 5553  ran crn 5555  cima 5557  (class class class)co 7150  m cmap 8401  sigAlgebracsiga 31272  MblFnMcmbfm 31413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fv 6362  df-ov 7153  df-oprab 7154  df-mpo 7155  df-mbfm 31414
This theorem is referenced by:  elunirnmbfm  31416  mbfmf  31418  isanmbfm  31419  mbfmcnvima  31420  mbfmcst  31422  1stmbfm  31423  2ndmbfm  31424  imambfm  31425  mbfmco  31427  elmbfmvol2  31430  mbfmcnt  31431  sibfof  31503  isrrvv  31606
  Copyright terms: Public domain W3C validator