Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbfm Structured version   Visualization version   GIF version

Theorem ismbfm 34241
Description: The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 25529. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Hypotheses
Ref Expression
ismbfm.1 (𝜑𝑆 ran sigAlgebra)
ismbfm.2 (𝜑𝑇 ran sigAlgebra)
Assertion
Ref Expression
ismbfm (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ismbfm
Dummy variables 𝑓 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbfm.1 . . . 4 (𝜑𝑆 ran sigAlgebra)
2 ismbfm.2 . . . 4 (𝜑𝑇 ran sigAlgebra)
3 unieq 4882 . . . . . . 7 (𝑠 = 𝑆 𝑠 = 𝑆)
43oveq2d 7403 . . . . . 6 (𝑠 = 𝑆 → ( 𝑡m 𝑠) = ( 𝑡m 𝑆))
5 eleq2 2817 . . . . . . 7 (𝑠 = 𝑆 → ((𝑓𝑥) ∈ 𝑠 ↔ (𝑓𝑥) ∈ 𝑆))
65ralbidv 3156 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠 ↔ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆))
74, 6rabeqbidv 3424 . . . . 5 (𝑠 = 𝑆 → {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠} = {𝑓 ∈ ( 𝑡m 𝑆) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆})
8 unieq 4882 . . . . . . 7 (𝑡 = 𝑇 𝑡 = 𝑇)
98oveq1d 7402 . . . . . 6 (𝑡 = 𝑇 → ( 𝑡m 𝑆) = ( 𝑇m 𝑆))
10 raleq 3296 . . . . . 6 (𝑡 = 𝑇 → (∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆))
119, 10rabeqbidv 3424 . . . . 5 (𝑡 = 𝑇 → {𝑓 ∈ ( 𝑡m 𝑆) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆} = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
12 df-mbfm 34240 . . . . 5 MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
13 ovex 7420 . . . . . 6 ( 𝑇m 𝑆) ∈ V
1413rabex 5294 . . . . 5 {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆} ∈ V
157, 11, 12, 14ovmpo 7549 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆MblFnM𝑇) = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
161, 2, 15syl2anc 584 . . 3 (𝜑 → (𝑆MblFnM𝑇) = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
1716eleq2d 2814 . 2 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ 𝐹 ∈ {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆}))
18 cnveq 5837 . . . . . 6 (𝑓 = 𝐹𝑓 = 𝐹)
1918imaeq1d 6030 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
2019eleq1d 2813 . . . 4 (𝑓 = 𝐹 → ((𝑓𝑥) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
2120ralbidv 3156 . . 3 (𝑓 = 𝐹 → (∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
2221elrab 3659 . 2 (𝐹 ∈ {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆} ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
2317, 22bitrdi 287 1 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405   cuni 4871  ccnv 5637  ran crn 5639  cima 5641  (class class class)co 7387  m cmap 8799  sigAlgebracsiga 34098  MblFnMcmbfm 34239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-mbfm 34240
This theorem is referenced by:  elunirnmbfm  34242  mbfmf  34244  mbfmcnvima  34246  mbfmcst  34250  1stmbfm  34251  2ndmbfm  34252  imambfm  34253  mbfmco  34255  elmbfmvol2  34258  mbfmcnt  34259  sibfof  34331  isrrvv  34434
  Copyright terms: Public domain W3C validator