Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbfm Structured version   Visualization version   GIF version

Theorem ismbfm 31789
Description: The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 24380. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Hypotheses
Ref Expression
ismbfm.1 (𝜑𝑆 ran sigAlgebra)
ismbfm.2 (𝜑𝑇 ran sigAlgebra)
Assertion
Ref Expression
ismbfm (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ismbfm
Dummy variables 𝑓 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbfm.1 . . . 4 (𝜑𝑆 ran sigAlgebra)
2 ismbfm.2 . . . 4 (𝜑𝑇 ran sigAlgebra)
3 unieq 4807 . . . . . . 7 (𝑠 = 𝑆 𝑠 = 𝑆)
43oveq2d 7186 . . . . . 6 (𝑠 = 𝑆 → ( 𝑡m 𝑠) = ( 𝑡m 𝑆))
5 eleq2 2821 . . . . . . 7 (𝑠 = 𝑆 → ((𝑓𝑥) ∈ 𝑠 ↔ (𝑓𝑥) ∈ 𝑆))
65ralbidv 3109 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠 ↔ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆))
74, 6rabeqbidv 3387 . . . . 5 (𝑠 = 𝑆 → {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠} = {𝑓 ∈ ( 𝑡m 𝑆) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆})
8 unieq 4807 . . . . . . 7 (𝑡 = 𝑇 𝑡 = 𝑇)
98oveq1d 7185 . . . . . 6 (𝑡 = 𝑇 → ( 𝑡m 𝑆) = ( 𝑇m 𝑆))
10 raleq 3310 . . . . . 6 (𝑡 = 𝑇 → (∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆))
119, 10rabeqbidv 3387 . . . . 5 (𝑡 = 𝑇 → {𝑓 ∈ ( 𝑡m 𝑆) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆} = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
12 df-mbfm 31788 . . . . 5 MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
13 ovex 7203 . . . . . 6 ( 𝑇m 𝑆) ∈ V
1413rabex 5200 . . . . 5 {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆} ∈ V
157, 11, 12, 14ovmpo 7325 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆MblFnM𝑇) = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
161, 2, 15syl2anc 587 . . 3 (𝜑 → (𝑆MblFnM𝑇) = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
1716eleq2d 2818 . 2 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ 𝐹 ∈ {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆}))
18 cnveq 5716 . . . . . 6 (𝑓 = 𝐹𝑓 = 𝐹)
1918imaeq1d 5902 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
2019eleq1d 2817 . . . 4 (𝑓 = 𝐹 → ((𝑓𝑥) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
2120ralbidv 3109 . . 3 (𝑓 = 𝐹 → (∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
2221elrab 3588 . 2 (𝐹 ∈ {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆} ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
2317, 22bitrdi 290 1 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3053  {crab 3057   cuni 4796  ccnv 5524  ran crn 5526  cima 5528  (class class class)co 7170  m cmap 8437  sigAlgebracsiga 31646  MblFnMcmbfm 31787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-mbfm 31788
This theorem is referenced by:  elunirnmbfm  31790  mbfmf  31792  isanmbfm  31793  mbfmcnvima  31794  mbfmcst  31796  1stmbfm  31797  2ndmbfm  31798  imambfm  31799  mbfmco  31801  elmbfmvol2  31804  mbfmcnt  31805  sibfof  31877  isrrvv  31980
  Copyright terms: Public domain W3C validator