Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbfm Structured version   Visualization version   GIF version

Theorem ismbfm 34264
Description: The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 25556. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Hypotheses
Ref Expression
ismbfm.1 (𝜑𝑆 ran sigAlgebra)
ismbfm.2 (𝜑𝑇 ran sigAlgebra)
Assertion
Ref Expression
ismbfm (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ismbfm
Dummy variables 𝑓 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbfm.1 . . . 4 (𝜑𝑆 ran sigAlgebra)
2 ismbfm.2 . . . 4 (𝜑𝑇 ran sigAlgebra)
3 unieq 4867 . . . . . . 7 (𝑠 = 𝑆 𝑠 = 𝑆)
43oveq2d 7362 . . . . . 6 (𝑠 = 𝑆 → ( 𝑡m 𝑠) = ( 𝑡m 𝑆))
5 eleq2 2820 . . . . . . 7 (𝑠 = 𝑆 → ((𝑓𝑥) ∈ 𝑠 ↔ (𝑓𝑥) ∈ 𝑆))
65ralbidv 3155 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠 ↔ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆))
74, 6rabeqbidv 3413 . . . . 5 (𝑠 = 𝑆 → {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠} = {𝑓 ∈ ( 𝑡m 𝑆) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆})
8 unieq 4867 . . . . . . 7 (𝑡 = 𝑇 𝑡 = 𝑇)
98oveq1d 7361 . . . . . 6 (𝑡 = 𝑇 → ( 𝑡m 𝑆) = ( 𝑇m 𝑆))
10 raleq 3289 . . . . . 6 (𝑡 = 𝑇 → (∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆))
119, 10rabeqbidv 3413 . . . . 5 (𝑡 = 𝑇 → {𝑓 ∈ ( 𝑡m 𝑆) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑆} = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
12 df-mbfm 34263 . . . . 5 MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
13 ovex 7379 . . . . . 6 ( 𝑇m 𝑆) ∈ V
1413rabex 5275 . . . . 5 {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆} ∈ V
157, 11, 12, 14ovmpo 7506 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆MblFnM𝑇) = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
161, 2, 15syl2anc 584 . . 3 (𝜑 → (𝑆MblFnM𝑇) = {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆})
1716eleq2d 2817 . 2 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ 𝐹 ∈ {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆}))
18 cnveq 5812 . . . . . 6 (𝑓 = 𝐹𝑓 = 𝐹)
1918imaeq1d 6007 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
2019eleq1d 2816 . . . 4 (𝑓 = 𝐹 → ((𝑓𝑥) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
2120ralbidv 3155 . . 3 (𝑓 = 𝐹 → (∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
2221elrab 3642 . 2 (𝐹 ∈ {𝑓 ∈ ( 𝑇m 𝑆) ∣ ∀𝑥𝑇 (𝑓𝑥) ∈ 𝑆} ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
2317, 22bitrdi 287 1 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395   cuni 4856  ccnv 5613  ran crn 5615  cima 5617  (class class class)co 7346  m cmap 8750  sigAlgebracsiga 34121  MblFnMcmbfm 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-mbfm 34263
This theorem is referenced by:  elunirnmbfm  34265  mbfmf  34267  mbfmcnvima  34268  mbfmcst  34272  1stmbfm  34273  2ndmbfm  34274  imambfm  34275  mbfmco  34277  elmbfmvol2  34280  mbfmcnt  34281  sibfof  34353  isrrvv  34456
  Copyright terms: Public domain W3C validator