| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elunirnmbfm | Structured version Visualization version GIF version | ||
| Description: The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
| Ref | Expression |
|---|---|
| elunirnmbfm | ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mbfm 34274 | . . . . 5 ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | |
| 2 | 1 | mpofun 7479 | . . . 4 ⊢ Fun MblFnM |
| 3 | elunirn 7194 | . . . 4 ⊢ (Fun MblFnM → (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎))) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎)) |
| 5 | ovex 7388 | . . . . . 6 ⊢ (∪ 𝑡 ↑m ∪ 𝑠) ∈ V | |
| 6 | 5 | rabex 5281 | . . . . 5 ⊢ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} ∈ V |
| 7 | 1, 6 | dmmpo 8012 | . . . 4 ⊢ dom MblFnM = (∪ ran sigAlgebra × ∪ ran sigAlgebra) |
| 8 | 7 | rexeqi 3293 | . . 3 ⊢ (∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑎 ∈ (∪ ran sigAlgebra × ∪ ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎)) |
| 9 | fveq2 6831 | . . . . . 6 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (MblFnM‘𝑎) = (MblFnM‘〈𝑠, 𝑡〉)) | |
| 10 | df-ov 7358 | . . . . . 6 ⊢ (𝑠MblFnM𝑡) = (MblFnM‘〈𝑠, 𝑡〉) | |
| 11 | 9, 10 | eqtr4di 2786 | . . . . 5 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (MblFnM‘𝑎) = (𝑠MblFnM𝑡)) |
| 12 | 11 | eleq2d 2819 | . . . 4 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (𝐹 ∈ (MblFnM‘𝑎) ↔ 𝐹 ∈ (𝑠MblFnM𝑡))) |
| 13 | 12 | rexxp 5789 | . . 3 ⊢ (∃𝑎 ∈ (∪ ran sigAlgebra × ∪ ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡)) |
| 14 | 4, 8, 13 | 3bitri 297 | . 2 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡)) |
| 15 | simpl 482 | . . . 4 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → 𝑠 ∈ ∪ ran sigAlgebra) | |
| 16 | simpr 484 | . . . 4 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → 𝑡 ∈ ∪ ran sigAlgebra) | |
| 17 | 15, 16 | ismbfm 34275 | . . 3 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → (𝐹 ∈ (𝑠MblFnM𝑡) ↔ (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠))) |
| 18 | 17 | 2rexbiia 3195 | . 2 ⊢ (∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡) ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
| 19 | 14, 18 | bitri 275 | 1 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 {crab 3397 〈cop 4583 ∪ cuni 4860 × cxp 5619 ◡ccnv 5620 dom cdm 5621 ran crn 5622 “ cima 5624 Fun wfun 6483 ‘cfv 6489 (class class class)co 7355 ↑m cmap 8759 sigAlgebracsiga 34132 MblFnMcmbfm 34273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-mbfm 34274 |
| This theorem is referenced by: mbfmfun 34277 |
| Copyright terms: Public domain | W3C validator |