![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elunirnmbfm | Structured version Visualization version GIF version |
Description: The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
Ref | Expression |
---|---|
elunirnmbfm | ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mbfm 30854 | . . . . 5 ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | |
2 | 1 | mpt2fun 7027 | . . . 4 ⊢ Fun MblFnM |
3 | elunirn 6769 | . . . 4 ⊢ (Fun MblFnM → (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎)) |
5 | ovex 6942 | . . . . . 6 ⊢ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∈ V | |
6 | 5 | rabex 5039 | . . . . 5 ⊢ {𝑓 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} ∈ V |
7 | 1, 6 | dmmpt2 7508 | . . . 4 ⊢ dom MblFnM = (∪ ran sigAlgebra × ∪ ran sigAlgebra) |
8 | 7 | rexeqi 3355 | . . 3 ⊢ (∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑎 ∈ (∪ ran sigAlgebra × ∪ ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎)) |
9 | fveq2 6437 | . . . . . 6 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (MblFnM‘𝑎) = (MblFnM‘〈𝑠, 𝑡〉)) | |
10 | df-ov 6913 | . . . . . 6 ⊢ (𝑠MblFnM𝑡) = (MblFnM‘〈𝑠, 𝑡〉) | |
11 | 9, 10 | syl6eqr 2879 | . . . . 5 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (MblFnM‘𝑎) = (𝑠MblFnM𝑡)) |
12 | 11 | eleq2d 2892 | . . . 4 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (𝐹 ∈ (MblFnM‘𝑎) ↔ 𝐹 ∈ (𝑠MblFnM𝑡))) |
13 | 12 | rexxp 5501 | . . 3 ⊢ (∃𝑎 ∈ (∪ ran sigAlgebra × ∪ ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡)) |
14 | 4, 8, 13 | 3bitri 289 | . 2 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡)) |
15 | simpl 476 | . . . 4 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → 𝑠 ∈ ∪ ran sigAlgebra) | |
16 | simpr 479 | . . . 4 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → 𝑡 ∈ ∪ ran sigAlgebra) | |
17 | 15, 16 | ismbfm 30855 | . . 3 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → (𝐹 ∈ (𝑠MblFnM𝑡) ↔ (𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠))) |
18 | 17 | 2rexbiia 3265 | . 2 ⊢ (∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡) ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
19 | 14, 18 | bitri 267 | 1 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ∃wrex 3118 {crab 3121 〈cop 4405 ∪ cuni 4660 × cxp 5344 ◡ccnv 5345 dom cdm 5346 ran crn 5347 “ cima 5349 Fun wfun 6121 ‘cfv 6127 (class class class)co 6910 ↑𝑚 cmap 8127 sigAlgebracsiga 30711 MblFnMcmbfm 30853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-mbfm 30854 |
This theorem is referenced by: mbfmfun 30857 isanmbfm 30859 |
Copyright terms: Public domain | W3C validator |