![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elunirnmbfm | Structured version Visualization version GIF version |
Description: The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
Ref | Expression |
---|---|
elunirnmbfm | ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mbfm 34231 | . . . . 5 ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | |
2 | 1 | mpofun 7557 | . . . 4 ⊢ Fun MblFnM |
3 | elunirn 7271 | . . . 4 ⊢ (Fun MblFnM → (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎)) |
5 | ovex 7464 | . . . . . 6 ⊢ (∪ 𝑡 ↑m ∪ 𝑠) ∈ V | |
6 | 5 | rabex 5345 | . . . . 5 ⊢ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} ∈ V |
7 | 1, 6 | dmmpo 8095 | . . . 4 ⊢ dom MblFnM = (∪ ran sigAlgebra × ∪ ran sigAlgebra) |
8 | 7 | rexeqi 3323 | . . 3 ⊢ (∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑎 ∈ (∪ ran sigAlgebra × ∪ ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎)) |
9 | fveq2 6907 | . . . . . 6 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (MblFnM‘𝑎) = (MblFnM‘〈𝑠, 𝑡〉)) | |
10 | df-ov 7434 | . . . . . 6 ⊢ (𝑠MblFnM𝑡) = (MblFnM‘〈𝑠, 𝑡〉) | |
11 | 9, 10 | eqtr4di 2793 | . . . . 5 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (MblFnM‘𝑎) = (𝑠MblFnM𝑡)) |
12 | 11 | eleq2d 2825 | . . . 4 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (𝐹 ∈ (MblFnM‘𝑎) ↔ 𝐹 ∈ (𝑠MblFnM𝑡))) |
13 | 12 | rexxp 5856 | . . 3 ⊢ (∃𝑎 ∈ (∪ ran sigAlgebra × ∪ ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡)) |
14 | 4, 8, 13 | 3bitri 297 | . 2 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡)) |
15 | simpl 482 | . . . 4 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → 𝑠 ∈ ∪ ran sigAlgebra) | |
16 | simpr 484 | . . . 4 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → 𝑡 ∈ ∪ ran sigAlgebra) | |
17 | 15, 16 | ismbfm 34232 | . . 3 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → (𝐹 ∈ (𝑠MblFnM𝑡) ↔ (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠))) |
18 | 17 | 2rexbiia 3216 | . 2 ⊢ (∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡) ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
19 | 14, 18 | bitri 275 | 1 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 {crab 3433 〈cop 4637 ∪ cuni 4912 × cxp 5687 ◡ccnv 5688 dom cdm 5689 ran crn 5690 “ cima 5692 Fun wfun 6557 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 sigAlgebracsiga 34089 MblFnMcmbfm 34230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-mbfm 34231 |
This theorem is referenced by: mbfmfun 34234 |
Copyright terms: Public domain | W3C validator |