Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elunirnmbfm Structured version   Visualization version   GIF version

Theorem elunirnmbfm 34255
Description: The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Assertion
Ref Expression
elunirnmbfm (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
Distinct variable group:   𝑡,𝑠,𝐹,𝑥

Proof of Theorem elunirnmbfm
Dummy variables 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mbfm 34253 . . . . 5 MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
21mpofun 7465 . . . 4 Fun MblFnM
3 elunirn 7180 . . . 4 (Fun MblFnM → (𝐹 ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎)))
42, 3ax-mp 5 . . 3 (𝐹 ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎))
5 ovex 7374 . . . . . 6 ( 𝑡m 𝑠) ∈ V
65rabex 5275 . . . . 5 {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠} ∈ V
71, 6dmmpo 7998 . . . 4 dom MblFnM = ( ran sigAlgebra × ran sigAlgebra)
87rexeqi 3289 . . 3 (∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑎 ∈ ( ran sigAlgebra × ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎))
9 fveq2 6817 . . . . . 6 (𝑎 = ⟨𝑠, 𝑡⟩ → (MblFnM‘𝑎) = (MblFnM‘⟨𝑠, 𝑡⟩))
10 df-ov 7344 . . . . . 6 (𝑠MblFnM𝑡) = (MblFnM‘⟨𝑠, 𝑡⟩)
119, 10eqtr4di 2783 . . . . 5 (𝑎 = ⟨𝑠, 𝑡⟩ → (MblFnM‘𝑎) = (𝑠MblFnM𝑡))
1211eleq2d 2815 . . . 4 (𝑎 = ⟨𝑠, 𝑡⟩ → (𝐹 ∈ (MblFnM‘𝑎) ↔ 𝐹 ∈ (𝑠MblFnM𝑡)))
1312rexxp 5780 . . 3 (∃𝑎 ∈ ( ran sigAlgebra × ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡))
144, 8, 133bitri 297 . 2 (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡))
15 simpl 482 . . . 4 ((𝑠 ran sigAlgebra ∧ 𝑡 ran sigAlgebra) → 𝑠 ran sigAlgebra)
16 simpr 484 . . . 4 ((𝑠 ran sigAlgebra ∧ 𝑡 ran sigAlgebra) → 𝑡 ran sigAlgebra)
1715, 16ismbfm 34254 . . 3 ((𝑠 ran sigAlgebra ∧ 𝑡 ran sigAlgebra) → (𝐹 ∈ (𝑠MblFnM𝑡) ↔ (𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠)))
18172rexbiia 3191 . 2 (∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡) ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
1914, 18bitri 275 1 (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  wrex 3054  {crab 3393  cop 4580   cuni 4857   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  Fun wfun 6471  cfv 6477  (class class class)co 7341  m cmap 8745  sigAlgebracsiga 34111  MblFnMcmbfm 34252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-mbfm 34253
This theorem is referenced by:  mbfmfun  34256
  Copyright terms: Public domain W3C validator