Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elunirnmbfm Structured version   Visualization version   GIF version

Theorem elunirnmbfm 33549
Description: The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Assertion
Ref Expression
elunirnmbfm (𝐹 ∈ βˆͺ ran MblFnM ↔ βˆƒπ‘  ∈ βˆͺ ran sigAlgebraβˆƒπ‘‘ ∈ βˆͺ ran sigAlgebra(𝐹 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∧ βˆ€π‘₯ ∈ 𝑑 (◑𝐹 β€œ π‘₯) ∈ 𝑠))
Distinct variable group:   𝑑,𝑠,𝐹,π‘₯

Proof of Theorem elunirnmbfm
Dummy variables 𝑓 π‘Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mbfm 33547 . . . . 5 MblFnM = (𝑠 ∈ βˆͺ ran sigAlgebra, 𝑑 ∈ βˆͺ ran sigAlgebra ↦ {𝑓 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∣ βˆ€π‘₯ ∈ 𝑑 (◑𝑓 β€œ π‘₯) ∈ 𝑠})
21mpofun 7535 . . . 4 Fun MblFnM
3 elunirn 7253 . . . 4 (Fun MblFnM β†’ (𝐹 ∈ βˆͺ ran MblFnM ↔ βˆƒπ‘Ž ∈ dom MblFnM𝐹 ∈ (MblFnMβ€˜π‘Ž)))
42, 3ax-mp 5 . . 3 (𝐹 ∈ βˆͺ ran MblFnM ↔ βˆƒπ‘Ž ∈ dom MblFnM𝐹 ∈ (MblFnMβ€˜π‘Ž))
5 ovex 7445 . . . . . 6 (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∈ V
65rabex 5332 . . . . 5 {𝑓 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∣ βˆ€π‘₯ ∈ 𝑑 (◑𝑓 β€œ π‘₯) ∈ 𝑠} ∈ V
71, 6dmmpo 8061 . . . 4 dom MblFnM = (βˆͺ ran sigAlgebra Γ— βˆͺ ran sigAlgebra)
87rexeqi 3323 . . 3 (βˆƒπ‘Ž ∈ dom MblFnM𝐹 ∈ (MblFnMβ€˜π‘Ž) ↔ βˆƒπ‘Ž ∈ (βˆͺ ran sigAlgebra Γ— βˆͺ ran sigAlgebra)𝐹 ∈ (MblFnMβ€˜π‘Ž))
9 fveq2 6891 . . . . . 6 (π‘Ž = βŸ¨π‘ , π‘‘βŸ© β†’ (MblFnMβ€˜π‘Ž) = (MblFnMβ€˜βŸ¨π‘ , π‘‘βŸ©))
10 df-ov 7415 . . . . . 6 (𝑠MblFnM𝑑) = (MblFnMβ€˜βŸ¨π‘ , π‘‘βŸ©)
119, 10eqtr4di 2789 . . . . 5 (π‘Ž = βŸ¨π‘ , π‘‘βŸ© β†’ (MblFnMβ€˜π‘Ž) = (𝑠MblFnM𝑑))
1211eleq2d 2818 . . . 4 (π‘Ž = βŸ¨π‘ , π‘‘βŸ© β†’ (𝐹 ∈ (MblFnMβ€˜π‘Ž) ↔ 𝐹 ∈ (𝑠MblFnM𝑑)))
1312rexxp 5842 . . 3 (βˆƒπ‘Ž ∈ (βˆͺ ran sigAlgebra Γ— βˆͺ ran sigAlgebra)𝐹 ∈ (MblFnMβ€˜π‘Ž) ↔ βˆƒπ‘  ∈ βˆͺ ran sigAlgebraβˆƒπ‘‘ ∈ βˆͺ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑑))
144, 8, 133bitri 297 . 2 (𝐹 ∈ βˆͺ ran MblFnM ↔ βˆƒπ‘  ∈ βˆͺ ran sigAlgebraβˆƒπ‘‘ ∈ βˆͺ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑑))
15 simpl 482 . . . 4 ((𝑠 ∈ βˆͺ ran sigAlgebra ∧ 𝑑 ∈ βˆͺ ran sigAlgebra) β†’ 𝑠 ∈ βˆͺ ran sigAlgebra)
16 simpr 484 . . . 4 ((𝑠 ∈ βˆͺ ran sigAlgebra ∧ 𝑑 ∈ βˆͺ ran sigAlgebra) β†’ 𝑑 ∈ βˆͺ ran sigAlgebra)
1715, 16ismbfm 33548 . . 3 ((𝑠 ∈ βˆͺ ran sigAlgebra ∧ 𝑑 ∈ βˆͺ ran sigAlgebra) β†’ (𝐹 ∈ (𝑠MblFnM𝑑) ↔ (𝐹 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∧ βˆ€π‘₯ ∈ 𝑑 (◑𝐹 β€œ π‘₯) ∈ 𝑠)))
18172rexbiia 3214 . 2 (βˆƒπ‘  ∈ βˆͺ ran sigAlgebraβˆƒπ‘‘ ∈ βˆͺ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑑) ↔ βˆƒπ‘  ∈ βˆͺ ran sigAlgebraβˆƒπ‘‘ ∈ βˆͺ ran sigAlgebra(𝐹 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∧ βˆ€π‘₯ ∈ 𝑑 (◑𝐹 β€œ π‘₯) ∈ 𝑠))
1914, 18bitri 275 1 (𝐹 ∈ βˆͺ ran MblFnM ↔ βˆƒπ‘  ∈ βˆͺ ran sigAlgebraβˆƒπ‘‘ ∈ βˆͺ ran sigAlgebra(𝐹 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∧ βˆ€π‘₯ ∈ 𝑑 (◑𝐹 β€œ π‘₯) ∈ 𝑠))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069  {crab 3431  βŸ¨cop 4634  βˆͺ cuni 4908   Γ— cxp 5674  β—‘ccnv 5675  dom cdm 5676  ran crn 5677   β€œ cima 5679  Fun wfun 6537  β€˜cfv 6543  (class class class)co 7412   ↑m cmap 8824  sigAlgebracsiga 33405  MblFnMcmbfm 33546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-mbfm 33547
This theorem is referenced by:  mbfmfun  33550
  Copyright terms: Public domain W3C validator