![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elunirnmbfm | Structured version Visualization version GIF version |
Description: The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
Ref | Expression |
---|---|
elunirnmbfm | ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mbfm 34214 | . . . . 5 ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | |
2 | 1 | mpofun 7574 | . . . 4 ⊢ Fun MblFnM |
3 | elunirn 7288 | . . . 4 ⊢ (Fun MblFnM → (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎)) |
5 | ovex 7481 | . . . . . 6 ⊢ (∪ 𝑡 ↑m ∪ 𝑠) ∈ V | |
6 | 5 | rabex 5357 | . . . . 5 ⊢ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} ∈ V |
7 | 1, 6 | dmmpo 8112 | . . . 4 ⊢ dom MblFnM = (∪ ran sigAlgebra × ∪ ran sigAlgebra) |
8 | 7 | rexeqi 3333 | . . 3 ⊢ (∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑎 ∈ (∪ ran sigAlgebra × ∪ ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎)) |
9 | fveq2 6920 | . . . . . 6 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (MblFnM‘𝑎) = (MblFnM‘〈𝑠, 𝑡〉)) | |
10 | df-ov 7451 | . . . . . 6 ⊢ (𝑠MblFnM𝑡) = (MblFnM‘〈𝑠, 𝑡〉) | |
11 | 9, 10 | eqtr4di 2798 | . . . . 5 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (MblFnM‘𝑎) = (𝑠MblFnM𝑡)) |
12 | 11 | eleq2d 2830 | . . . 4 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (𝐹 ∈ (MblFnM‘𝑎) ↔ 𝐹 ∈ (𝑠MblFnM𝑡))) |
13 | 12 | rexxp 5867 | . . 3 ⊢ (∃𝑎 ∈ (∪ ran sigAlgebra × ∪ ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡)) |
14 | 4, 8, 13 | 3bitri 297 | . 2 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡)) |
15 | simpl 482 | . . . 4 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → 𝑠 ∈ ∪ ran sigAlgebra) | |
16 | simpr 484 | . . . 4 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → 𝑡 ∈ ∪ ran sigAlgebra) | |
17 | 15, 16 | ismbfm 34215 | . . 3 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → (𝐹 ∈ (𝑠MblFnM𝑡) ↔ (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠))) |
18 | 17 | 2rexbiia 3224 | . 2 ⊢ (∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡) ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
19 | 14, 18 | bitri 275 | 1 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 〈cop 4654 ∪ cuni 4931 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ran crn 5701 “ cima 5703 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 sigAlgebracsiga 34072 MblFnMcmbfm 34213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-mbfm 34214 |
This theorem is referenced by: mbfmfun 34217 |
Copyright terms: Public domain | W3C validator |