Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elunirnmbfm Structured version   Visualization version   GIF version

Theorem elunirnmbfm 34249
Description: The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Assertion
Ref Expression
elunirnmbfm (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
Distinct variable group:   𝑡,𝑠,𝐹,𝑥

Proof of Theorem elunirnmbfm
Dummy variables 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mbfm 34247 . . . . 5 MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
21mpofun 7516 . . . 4 Fun MblFnM
3 elunirn 7228 . . . 4 (Fun MblFnM → (𝐹 ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎)))
42, 3ax-mp 5 . . 3 (𝐹 ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎))
5 ovex 7423 . . . . . 6 ( 𝑡m 𝑠) ∈ V
65rabex 5297 . . . . 5 {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠} ∈ V
71, 6dmmpo 8053 . . . 4 dom MblFnM = ( ran sigAlgebra × ran sigAlgebra)
87rexeqi 3300 . . 3 (∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑎 ∈ ( ran sigAlgebra × ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎))
9 fveq2 6861 . . . . . 6 (𝑎 = ⟨𝑠, 𝑡⟩ → (MblFnM‘𝑎) = (MblFnM‘⟨𝑠, 𝑡⟩))
10 df-ov 7393 . . . . . 6 (𝑠MblFnM𝑡) = (MblFnM‘⟨𝑠, 𝑡⟩)
119, 10eqtr4di 2783 . . . . 5 (𝑎 = ⟨𝑠, 𝑡⟩ → (MblFnM‘𝑎) = (𝑠MblFnM𝑡))
1211eleq2d 2815 . . . 4 (𝑎 = ⟨𝑠, 𝑡⟩ → (𝐹 ∈ (MblFnM‘𝑎) ↔ 𝐹 ∈ (𝑠MblFnM𝑡)))
1312rexxp 5809 . . 3 (∃𝑎 ∈ ( ran sigAlgebra × ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡))
144, 8, 133bitri 297 . 2 (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡))
15 simpl 482 . . . 4 ((𝑠 ran sigAlgebra ∧ 𝑡 ran sigAlgebra) → 𝑠 ran sigAlgebra)
16 simpr 484 . . . 4 ((𝑠 ran sigAlgebra ∧ 𝑡 ran sigAlgebra) → 𝑡 ran sigAlgebra)
1715, 16ismbfm 34248 . . 3 ((𝑠 ran sigAlgebra ∧ 𝑡 ran sigAlgebra) → (𝐹 ∈ (𝑠MblFnM𝑡) ↔ (𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠)))
18172rexbiia 3199 . 2 (∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡) ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
1914, 18bitri 275 1 (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  cop 4598   cuni 4874   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508  cfv 6514  (class class class)co 7390  m cmap 8802  sigAlgebracsiga 34105  MblFnMcmbfm 34246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-mbfm 34247
This theorem is referenced by:  mbfmfun  34250
  Copyright terms: Public domain W3C validator