Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elunirnmbfm Structured version   Visualization version   GIF version

Theorem elunirnmbfm 32360
Description: The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Assertion
Ref Expression
elunirnmbfm (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
Distinct variable group:   𝑡,𝑠,𝐹,𝑥

Proof of Theorem elunirnmbfm
Dummy variables 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mbfm 32358 . . . . 5 MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
21mpofun 7440 . . . 4 Fun MblFnM
3 elunirn 7164 . . . 4 (Fun MblFnM → (𝐹 ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎)))
42, 3ax-mp 5 . . 3 (𝐹 ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎))
5 ovex 7350 . . . . . 6 ( 𝑡m 𝑠) ∈ V
65rabex 5271 . . . . 5 {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠} ∈ V
71, 6dmmpo 7958 . . . 4 dom MblFnM = ( ran sigAlgebra × ran sigAlgebra)
87rexeqi 3309 . . 3 (∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑎 ∈ ( ran sigAlgebra × ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎))
9 fveq2 6812 . . . . . 6 (𝑎 = ⟨𝑠, 𝑡⟩ → (MblFnM‘𝑎) = (MblFnM‘⟨𝑠, 𝑡⟩))
10 df-ov 7320 . . . . . 6 (𝑠MblFnM𝑡) = (MblFnM‘⟨𝑠, 𝑡⟩)
119, 10eqtr4di 2795 . . . . 5 (𝑎 = ⟨𝑠, 𝑡⟩ → (MblFnM‘𝑎) = (𝑠MblFnM𝑡))
1211eleq2d 2823 . . . 4 (𝑎 = ⟨𝑠, 𝑡⟩ → (𝐹 ∈ (MblFnM‘𝑎) ↔ 𝐹 ∈ (𝑠MblFnM𝑡)))
1312rexxp 5772 . . 3 (∃𝑎 ∈ ( ran sigAlgebra × ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡))
144, 8, 133bitri 296 . 2 (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡))
15 simpl 483 . . . 4 ((𝑠 ran sigAlgebra ∧ 𝑡 ran sigAlgebra) → 𝑠 ran sigAlgebra)
16 simpr 485 . . . 4 ((𝑠 ran sigAlgebra ∧ 𝑡 ran sigAlgebra) → 𝑡 ran sigAlgebra)
1715, 16ismbfm 32359 . . 3 ((𝑠 ran sigAlgebra ∧ 𝑡 ran sigAlgebra) → (𝐹 ∈ (𝑠MblFnM𝑡) ↔ (𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠)))
18172rexbiia 3206 . 2 (∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡) ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
1914, 18bitri 274 1 (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3062  wrex 3071  {crab 3404  cop 4577   cuni 4850   × cxp 5606  ccnv 5607  dom cdm 5608  ran crn 5609  cima 5611  Fun wfun 6460  cfv 6466  (class class class)co 7317  m cmap 8665  sigAlgebracsiga 32216  MblFnMcmbfm 32357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7630
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-fv 6474  df-ov 7320  df-oprab 7321  df-mpo 7322  df-1st 7878  df-2nd 7879  df-mbfm 32358
This theorem is referenced by:  mbfmfun  32361  isanmbfm  32363
  Copyright terms: Public domain W3C validator