Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elunirnmbfm | Structured version Visualization version GIF version |
Description: The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
Ref | Expression |
---|---|
elunirnmbfm | ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mbfm 32358 | . . . . 5 ⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | |
2 | 1 | mpofun 7440 | . . . 4 ⊢ Fun MblFnM |
3 | elunirn 7164 | . . . 4 ⊢ (Fun MblFnM → (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎)) |
5 | ovex 7350 | . . . . . 6 ⊢ (∪ 𝑡 ↑m ∪ 𝑠) ∈ V | |
6 | 5 | rabex 5271 | . . . . 5 ⊢ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠} ∈ V |
7 | 1, 6 | dmmpo 7958 | . . . 4 ⊢ dom MblFnM = (∪ ran sigAlgebra × ∪ ran sigAlgebra) |
8 | 7 | rexeqi 3309 | . . 3 ⊢ (∃𝑎 ∈ dom MblFnM𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑎 ∈ (∪ ran sigAlgebra × ∪ ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎)) |
9 | fveq2 6812 | . . . . . 6 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (MblFnM‘𝑎) = (MblFnM‘〈𝑠, 𝑡〉)) | |
10 | df-ov 7320 | . . . . . 6 ⊢ (𝑠MblFnM𝑡) = (MblFnM‘〈𝑠, 𝑡〉) | |
11 | 9, 10 | eqtr4di 2795 | . . . . 5 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (MblFnM‘𝑎) = (𝑠MblFnM𝑡)) |
12 | 11 | eleq2d 2823 | . . . 4 ⊢ (𝑎 = 〈𝑠, 𝑡〉 → (𝐹 ∈ (MblFnM‘𝑎) ↔ 𝐹 ∈ (𝑠MblFnM𝑡))) |
13 | 12 | rexxp 5772 | . . 3 ⊢ (∃𝑎 ∈ (∪ ran sigAlgebra × ∪ ran sigAlgebra)𝐹 ∈ (MblFnM‘𝑎) ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡)) |
14 | 4, 8, 13 | 3bitri 296 | . 2 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡)) |
15 | simpl 483 | . . . 4 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → 𝑠 ∈ ∪ ran sigAlgebra) | |
16 | simpr 485 | . . . 4 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → 𝑡 ∈ ∪ ran sigAlgebra) | |
17 | 15, 16 | ismbfm 32359 | . . 3 ⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ 𝑡 ∈ ∪ ran sigAlgebra) → (𝐹 ∈ (𝑠MblFnM𝑡) ↔ (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠))) |
18 | 17 | 2rexbiia 3206 | . 2 ⊢ (∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra𝐹 ∈ (𝑠MblFnM𝑡) ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
19 | 14, 18 | bitri 274 | 1 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ∃wrex 3071 {crab 3404 〈cop 4577 ∪ cuni 4850 × cxp 5606 ◡ccnv 5607 dom cdm 5608 ran crn 5609 “ cima 5611 Fun wfun 6460 ‘cfv 6466 (class class class)co 7317 ↑m cmap 8665 sigAlgebracsiga 32216 MblFnMcmbfm 32357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-fv 6474 df-ov 7320 df-oprab 7321 df-mpo 7322 df-1st 7878 df-2nd 7879 df-mbfm 32358 |
This theorem is referenced by: mbfmfun 32361 isanmbfm 32363 |
Copyright terms: Public domain | W3C validator |