Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsval Structured version   Visualization version   GIF version

Theorem mclsval 34157
Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsval.h 𝐻 = (mVH‘𝑇)
mclsval.a 𝐴 = (mAx‘𝑇)
mclsval.s 𝑆 = (mSubst‘𝑇)
mclsval.v 𝑉 = (mVars‘𝑇)
Assertion
Ref Expression
mclsval (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
Distinct variable groups:   𝑚,𝑐,𝑜,𝑝,𝑠,𝐸   𝑥,𝑐,𝐻,𝑚,𝑜,𝑝,𝑠   𝑦,𝑐,𝐵,𝑚,𝑜,𝑝,𝑠,𝑥   𝐶,𝑚,𝑜,𝑝,𝑠,𝑥   𝐴,𝑐,𝑚,𝑜,𝑝,𝑠   𝑆,𝑐,𝑠,𝑥,𝑦   𝑇,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝜑,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝑉,𝑐,𝑥   𝐾,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑦,𝑐)   𝐷(𝑥,𝑦,𝑚,𝑜,𝑠,𝑝,𝑐)   𝑆(𝑚,𝑜,𝑝)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝑉(𝑦,𝑚,𝑜,𝑠,𝑝)

Proof of Theorem mclsval
Dummy variables 𝑑 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mclsval.c . . 3 𝐶 = (mCls‘𝑇)
2 mclsval.1 . . . 4 (𝜑𝑇 ∈ mFS)
3 elex 3463 . . . 4 (𝑇 ∈ mFS → 𝑇 ∈ V)
4 fveq2 6842 . . . . . . . 8 (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇))
5 mclsval.d . . . . . . . 8 𝐷 = (mDV‘𝑇)
64, 5eqtr4di 2794 . . . . . . 7 (𝑡 = 𝑇 → (mDV‘𝑡) = 𝐷)
76pweqd 4577 . . . . . 6 (𝑡 = 𝑇 → 𝒫 (mDV‘𝑡) = 𝒫 𝐷)
8 fveq2 6842 . . . . . . . 8 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
9 mclsval.e . . . . . . . 8 𝐸 = (mEx‘𝑇)
108, 9eqtr4di 2794 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
1110pweqd 4577 . . . . . 6 (𝑡 = 𝑇 → 𝒫 (mEx‘𝑡) = 𝒫 𝐸)
12 fveq2 6842 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (mVH‘𝑡) = (mVH‘𝑇))
13 mclsval.h . . . . . . . . . . . . 13 𝐻 = (mVH‘𝑇)
1412, 13eqtr4di 2794 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (mVH‘𝑡) = 𝐻)
1514rneqd 5893 . . . . . . . . . . 11 (𝑡 = 𝑇 → ran (mVH‘𝑡) = ran 𝐻)
1615uneq2d 4123 . . . . . . . . . 10 (𝑡 = 𝑇 → ( ∪ ran (mVH‘𝑡)) = ( ∪ ran 𝐻))
1716sseq1d 3975 . . . . . . . . 9 (𝑡 = 𝑇 → (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ↔ ( ∪ ran 𝐻) ⊆ 𝑐))
18 fveq2 6842 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (mAx‘𝑡) = (mAx‘𝑇))
19 mclsval.a . . . . . . . . . . . . . 14 𝐴 = (mAx‘𝑇)
2018, 19eqtr4di 2794 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (mAx‘𝑡) = 𝐴)
2120eleq2d 2823 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) ↔ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴))
22 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → (mSubst‘𝑡) = (mSubst‘𝑇))
23 mclsval.s . . . . . . . . . . . . . . 15 𝑆 = (mSubst‘𝑇)
2422, 23eqtr4di 2794 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (mSubst‘𝑡) = 𝑆)
2524rneqd 5893 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ran (mSubst‘𝑡) = ran 𝑆)
2615uneq2d 4123 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → (𝑜 ∪ ran (mVH‘𝑡)) = (𝑜 ∪ ran 𝐻))
2726imaeq2d 6013 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → (𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) = (𝑠 “ (𝑜 ∪ ran 𝐻)))
2827sseq1d 3975 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → ((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ↔ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐))
29 fveq2 6842 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (mVars‘𝑡) = (mVars‘𝑇))
30 mclsval.v . . . . . . . . . . . . . . . . . . . . 21 𝑉 = (mVars‘𝑇)
3129, 30eqtr4di 2794 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (mVars‘𝑡) = 𝑉)
3214fveq1d 6844 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → ((mVH‘𝑡)‘𝑥) = (𝐻𝑥))
3332fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (𝑠‘((mVH‘𝑡)‘𝑥)) = (𝑠‘(𝐻𝑥)))
3431, 33fveq12d 6849 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) = (𝑉‘(𝑠‘(𝐻𝑥))))
3514fveq1d 6844 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → ((mVH‘𝑡)‘𝑦) = (𝐻𝑦))
3635fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (𝑠‘((mVH‘𝑡)‘𝑦)) = (𝑠‘(𝐻𝑦)))
3731, 36fveq12d 6849 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦))) = (𝑉‘(𝑠‘(𝐻𝑦))))
3834, 37xpeq12d 5664 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) = ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))))
3938sseq1d 3975 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → ((((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑 ↔ ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑))
4039imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → ((𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) ↔ (𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)))
41402albidv 1926 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → (∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) ↔ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)))
4228, 41anbi12d 631 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑))))
4342imbi1d 341 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))
4425, 43raleqbidv 3319 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))
4521, 44imbi12d 344 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
4645albidv 1923 . . . . . . . . . 10 (𝑡 = 𝑇 → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
47462albidv 1926 . . . . . . . . 9 (𝑡 = 𝑇 → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
4817, 47anbi12d 631 . . . . . . . 8 (𝑡 = 𝑇 → ((( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))) ↔ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))))
4948abbidv 2805 . . . . . . 7 (𝑡 = 𝑇 → {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
5049inteqd 4912 . . . . . 6 (𝑡 = 𝑇 {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
517, 11, 50mpoeq123dv 7432 . . . . 5 (𝑡 = 𝑇 → (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
52 df-mcls 34091 . . . . 5 mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
535fvexi 6856 . . . . . . 7 𝐷 ∈ V
5453pwex 5335 . . . . . 6 𝒫 𝐷 ∈ V
559fvexi 6856 . . . . . . 7 𝐸 ∈ V
5655pwex 5335 . . . . . 6 𝒫 𝐸 ∈ V
5754, 56mpoex 8012 . . . . 5 (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V
5851, 52, 57fvmpt 6948 . . . 4 (𝑇 ∈ V → (mCls‘𝑇) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
592, 3, 583syl 18 . . 3 (𝜑 → (mCls‘𝑇) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
601, 59eqtrid 2788 . 2 (𝜑𝐶 = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
61 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → = 𝐵)
6261uneq1d 4122 . . . . . 6 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ( ∪ ran 𝐻) = (𝐵 ∪ ran 𝐻))
6362sseq1d 3975 . . . . 5 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (( ∪ ran 𝐻) ⊆ 𝑐 ↔ (𝐵 ∪ ran 𝐻) ⊆ 𝑐))
64 simprl 769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → 𝑑 = 𝐾)
6564sseq2d 3976 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑 ↔ ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))
6665imbi2d 340 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑) ↔ (𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
67662albidv 1926 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑) ↔ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
6867anbi2d 629 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
6968imbi1d 341 . . . . . . . . 9 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
7069ralbidv 3174 . . . . . . . 8 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
7170imbi2d 340 . . . . . . 7 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
7271albidv 1923 . . . . . 6 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
73722albidv 1926 . . . . 5 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
7463, 73anbi12d 631 . . . 4 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))) ↔ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))))
7574abbidv 2805 . . 3 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
7675inteqd 4912 . 2 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
77 mclsval.2 . . 3 (𝜑𝐾𝐷)
7853elpw2 5302 . . 3 (𝐾 ∈ 𝒫 𝐷𝐾𝐷)
7977, 78sylibr 233 . 2 (𝜑𝐾 ∈ 𝒫 𝐷)
80 mclsval.3 . . 3 (𝜑𝐵𝐸)
8155elpw2 5302 . . 3 (𝐵 ∈ 𝒫 𝐸𝐵𝐸)
8280, 81sylibr 233 . 2 (𝜑𝐵 ∈ 𝒫 𝐸)
835, 9, 1, 2, 77, 80, 13, 19, 23, 30mclsssvlem 34156 . . 3 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝐸)
8455ssex 5278 . . 3 ( {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝐸 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ∈ V)
8583, 84syl 17 . 2 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ∈ V)
8660, 76, 79, 82, 85ovmpod 7507 1 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wcel 2106  {cab 2713  wral 3064  Vcvv 3445  cun 3908  wss 3910  𝒫 cpw 4560  cotp 4594   cint 4907   class class class wbr 5105   × cxp 5631  ran crn 5634  cima 5636  cfv 6496  (class class class)co 7357  cmpo 7359  mAxcmax 34059  mExcmex 34061  mDVcmdv 34062  mVarscmvrs 34063  mSubstcmsub 34065  mVHcmvh 34066  mFScmfs 34070  mClscmcls 34071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-frmd 18659  df-mrex 34080  df-mex 34081  df-mrsub 34084  df-msub 34085  df-mvh 34086  df-mpst 34087  df-msr 34088  df-msta 34089  df-mfs 34090  df-mcls 34091
This theorem is referenced by:  mclsssv  34158  ssmclslem  34159  ss2mcls  34162  mclsax  34163  mclsind  34164
  Copyright terms: Public domain W3C validator