Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsval Structured version   Visualization version   GIF version

Theorem mclsval 33504
Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsval.h 𝐻 = (mVH‘𝑇)
mclsval.a 𝐴 = (mAx‘𝑇)
mclsval.s 𝑆 = (mSubst‘𝑇)
mclsval.v 𝑉 = (mVars‘𝑇)
Assertion
Ref Expression
mclsval (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
Distinct variable groups:   𝑚,𝑐,𝑜,𝑝,𝑠,𝐸   𝑥,𝑐,𝐻,𝑚,𝑜,𝑝,𝑠   𝑦,𝑐,𝐵,𝑚,𝑜,𝑝,𝑠,𝑥   𝐶,𝑚,𝑜,𝑝,𝑠,𝑥   𝐴,𝑐,𝑚,𝑜,𝑝,𝑠   𝑆,𝑐,𝑠,𝑥,𝑦   𝑇,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝜑,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝑉,𝑐,𝑥   𝐾,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑦,𝑐)   𝐷(𝑥,𝑦,𝑚,𝑜,𝑠,𝑝,𝑐)   𝑆(𝑚,𝑜,𝑝)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝑉(𝑦,𝑚,𝑜,𝑠,𝑝)

Proof of Theorem mclsval
Dummy variables 𝑑 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mclsval.c . . 3 𝐶 = (mCls‘𝑇)
2 mclsval.1 . . . 4 (𝜑𝑇 ∈ mFS)
3 elex 3448 . . . 4 (𝑇 ∈ mFS → 𝑇 ∈ V)
4 fveq2 6768 . . . . . . . 8 (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇))
5 mclsval.d . . . . . . . 8 𝐷 = (mDV‘𝑇)
64, 5eqtr4di 2797 . . . . . . 7 (𝑡 = 𝑇 → (mDV‘𝑡) = 𝐷)
76pweqd 4557 . . . . . 6 (𝑡 = 𝑇 → 𝒫 (mDV‘𝑡) = 𝒫 𝐷)
8 fveq2 6768 . . . . . . . 8 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
9 mclsval.e . . . . . . . 8 𝐸 = (mEx‘𝑇)
108, 9eqtr4di 2797 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
1110pweqd 4557 . . . . . 6 (𝑡 = 𝑇 → 𝒫 (mEx‘𝑡) = 𝒫 𝐸)
12 fveq2 6768 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (mVH‘𝑡) = (mVH‘𝑇))
13 mclsval.h . . . . . . . . . . . . 13 𝐻 = (mVH‘𝑇)
1412, 13eqtr4di 2797 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (mVH‘𝑡) = 𝐻)
1514rneqd 5844 . . . . . . . . . . 11 (𝑡 = 𝑇 → ran (mVH‘𝑡) = ran 𝐻)
1615uneq2d 4101 . . . . . . . . . 10 (𝑡 = 𝑇 → ( ∪ ran (mVH‘𝑡)) = ( ∪ ran 𝐻))
1716sseq1d 3956 . . . . . . . . 9 (𝑡 = 𝑇 → (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ↔ ( ∪ ran 𝐻) ⊆ 𝑐))
18 fveq2 6768 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (mAx‘𝑡) = (mAx‘𝑇))
19 mclsval.a . . . . . . . . . . . . . 14 𝐴 = (mAx‘𝑇)
2018, 19eqtr4di 2797 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (mAx‘𝑡) = 𝐴)
2120eleq2d 2825 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) ↔ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴))
22 fveq2 6768 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → (mSubst‘𝑡) = (mSubst‘𝑇))
23 mclsval.s . . . . . . . . . . . . . . 15 𝑆 = (mSubst‘𝑇)
2422, 23eqtr4di 2797 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (mSubst‘𝑡) = 𝑆)
2524rneqd 5844 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ran (mSubst‘𝑡) = ran 𝑆)
2615uneq2d 4101 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → (𝑜 ∪ ran (mVH‘𝑡)) = (𝑜 ∪ ran 𝐻))
2726imaeq2d 5966 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → (𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) = (𝑠 “ (𝑜 ∪ ran 𝐻)))
2827sseq1d 3956 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → ((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ↔ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐))
29 fveq2 6768 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (mVars‘𝑡) = (mVars‘𝑇))
30 mclsval.v . . . . . . . . . . . . . . . . . . . . 21 𝑉 = (mVars‘𝑇)
3129, 30eqtr4di 2797 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (mVars‘𝑡) = 𝑉)
3214fveq1d 6770 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → ((mVH‘𝑡)‘𝑥) = (𝐻𝑥))
3332fveq2d 6772 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (𝑠‘((mVH‘𝑡)‘𝑥)) = (𝑠‘(𝐻𝑥)))
3431, 33fveq12d 6775 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) = (𝑉‘(𝑠‘(𝐻𝑥))))
3514fveq1d 6770 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → ((mVH‘𝑡)‘𝑦) = (𝐻𝑦))
3635fveq2d 6772 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (𝑠‘((mVH‘𝑡)‘𝑦)) = (𝑠‘(𝐻𝑦)))
3731, 36fveq12d 6775 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦))) = (𝑉‘(𝑠‘(𝐻𝑦))))
3834, 37xpeq12d 5619 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) = ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))))
3938sseq1d 3956 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → ((((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑 ↔ ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑))
4039imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → ((𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) ↔ (𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)))
41402albidv 1929 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → (∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) ↔ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)))
4228, 41anbi12d 630 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑))))
4342imbi1d 341 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))
4425, 43raleqbidv 3334 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))
4521, 44imbi12d 344 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
4645albidv 1926 . . . . . . . . . 10 (𝑡 = 𝑇 → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
47462albidv 1929 . . . . . . . . 9 (𝑡 = 𝑇 → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
4817, 47anbi12d 630 . . . . . . . 8 (𝑡 = 𝑇 → ((( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))) ↔ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))))
4948abbidv 2808 . . . . . . 7 (𝑡 = 𝑇 → {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
5049inteqd 4889 . . . . . 6 (𝑡 = 𝑇 {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
517, 11, 50mpoeq123dv 7341 . . . . 5 (𝑡 = 𝑇 → (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
52 df-mcls 33438 . . . . 5 mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
535fvexi 6782 . . . . . . 7 𝐷 ∈ V
5453pwex 5306 . . . . . 6 𝒫 𝐷 ∈ V
559fvexi 6782 . . . . . . 7 𝐸 ∈ V
5655pwex 5306 . . . . . 6 𝒫 𝐸 ∈ V
5754, 56mpoex 7906 . . . . 5 (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V
5851, 52, 57fvmpt 6869 . . . 4 (𝑇 ∈ V → (mCls‘𝑇) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
592, 3, 583syl 18 . . 3 (𝜑 → (mCls‘𝑇) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
601, 59eqtrid 2791 . 2 (𝜑𝐶 = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
61 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → = 𝐵)
6261uneq1d 4100 . . . . . 6 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ( ∪ ran 𝐻) = (𝐵 ∪ ran 𝐻))
6362sseq1d 3956 . . . . 5 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (( ∪ ran 𝐻) ⊆ 𝑐 ↔ (𝐵 ∪ ran 𝐻) ⊆ 𝑐))
64 simprl 767 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → 𝑑 = 𝐾)
6564sseq2d 3957 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑 ↔ ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))
6665imbi2d 340 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑) ↔ (𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
67662albidv 1929 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑) ↔ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
6867anbi2d 628 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
6968imbi1d 341 . . . . . . . . 9 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
7069ralbidv 3122 . . . . . . . 8 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
7170imbi2d 340 . . . . . . 7 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
7271albidv 1926 . . . . . 6 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
73722albidv 1929 . . . . 5 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
7463, 73anbi12d 630 . . . 4 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))) ↔ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))))
7574abbidv 2808 . . 3 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
7675inteqd 4889 . 2 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
77 mclsval.2 . . 3 (𝜑𝐾𝐷)
7853elpw2 5272 . . 3 (𝐾 ∈ 𝒫 𝐷𝐾𝐷)
7977, 78sylibr 233 . 2 (𝜑𝐾 ∈ 𝒫 𝐷)
80 mclsval.3 . . 3 (𝜑𝐵𝐸)
8155elpw2 5272 . . 3 (𝐵 ∈ 𝒫 𝐸𝐵𝐸)
8280, 81sylibr 233 . 2 (𝜑𝐵 ∈ 𝒫 𝐸)
835, 9, 1, 2, 77, 80, 13, 19, 23, 30mclsssvlem 33503 . . 3 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝐸)
8455ssex 5248 . . 3 ( {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝐸 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ∈ V)
8583, 84syl 17 . 2 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ∈ V)
8660, 76, 79, 82, 85ovmpod 7416 1 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2109  {cab 2716  wral 3065  Vcvv 3430  cun 3889  wss 3891  𝒫 cpw 4538  cotp 4574   cint 4884   class class class wbr 5078   × cxp 5586  ran crn 5589  cima 5591  cfv 6430  (class class class)co 7268  cmpo 7270  mAxcmax 33406  mExcmex 33408  mDVcmdv 33409  mVarscmvrs 33410  mSubstcmsub 33412  mVHcmvh 33413  mFScmfs 33417  mClscmcls 33418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-seq 13703  df-hash 14026  df-word 14199  df-concat 14255  df-s1 14282  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-0g 17133  df-gsum 17134  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-frmd 18469  df-mrex 33427  df-mex 33428  df-mrsub 33431  df-msub 33432  df-mvh 33433  df-mpst 33434  df-msr 33435  df-msta 33436  df-mfs 33437  df-mcls 33438
This theorem is referenced by:  mclsssv  33505  ssmclslem  33506  ss2mcls  33509  mclsax  33510  mclsind  33511
  Copyright terms: Public domain W3C validator