Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsval Structured version   Visualization version   GIF version

Theorem mclsval 35020
Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDVβ€˜π‘‡)
mclsval.e 𝐸 = (mExβ€˜π‘‡)
mclsval.c 𝐢 = (mClsβ€˜π‘‡)
mclsval.1 (πœ‘ β†’ 𝑇 ∈ mFS)
mclsval.2 (πœ‘ β†’ 𝐾 βŠ† 𝐷)
mclsval.3 (πœ‘ β†’ 𝐡 βŠ† 𝐸)
mclsval.h 𝐻 = (mVHβ€˜π‘‡)
mclsval.a 𝐴 = (mAxβ€˜π‘‡)
mclsval.s 𝑆 = (mSubstβ€˜π‘‡)
mclsval.v 𝑉 = (mVarsβ€˜π‘‡)
Assertion
Ref Expression
mclsval (πœ‘ β†’ (𝐾𝐢𝐡) = ∩ {𝑐 ∣ ((𝐡 βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))})
Distinct variable groups:   π‘š,𝑐,π‘œ,𝑝,𝑠,𝐸   π‘₯,𝑐,𝐻,π‘š,π‘œ,𝑝,𝑠   𝑦,𝑐,𝐡,π‘š,π‘œ,𝑝,𝑠,π‘₯   𝐢,π‘š,π‘œ,𝑝,𝑠,π‘₯   𝐴,𝑐,π‘š,π‘œ,𝑝,𝑠   𝑆,𝑐,𝑠,π‘₯,𝑦   𝑇,𝑐,π‘š,π‘œ,𝑝,𝑠,π‘₯,𝑦   πœ‘,𝑐,π‘š,π‘œ,𝑝,𝑠,π‘₯,𝑦   𝑉,𝑐,π‘₯   𝐾,𝑐,π‘š,π‘œ,𝑝,𝑠,π‘₯,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)   𝐢(𝑦,𝑐)   𝐷(π‘₯,𝑦,π‘š,π‘œ,𝑠,𝑝,𝑐)   𝑆(π‘š,π‘œ,𝑝)   𝐸(π‘₯,𝑦)   𝐻(𝑦)   𝑉(𝑦,π‘š,π‘œ,𝑠,𝑝)

Proof of Theorem mclsval
Dummy variables β„Ž 𝑑 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mclsval.c . . 3 𝐢 = (mClsβ€˜π‘‡)
2 mclsval.1 . . . 4 (πœ‘ β†’ 𝑇 ∈ mFS)
3 elex 3492 . . . 4 (𝑇 ∈ mFS β†’ 𝑇 ∈ V)
4 fveq2 6891 . . . . . . . 8 (𝑑 = 𝑇 β†’ (mDVβ€˜π‘‘) = (mDVβ€˜π‘‡))
5 mclsval.d . . . . . . . 8 𝐷 = (mDVβ€˜π‘‡)
64, 5eqtr4di 2789 . . . . . . 7 (𝑑 = 𝑇 β†’ (mDVβ€˜π‘‘) = 𝐷)
76pweqd 4619 . . . . . 6 (𝑑 = 𝑇 β†’ 𝒫 (mDVβ€˜π‘‘) = 𝒫 𝐷)
8 fveq2 6891 . . . . . . . 8 (𝑑 = 𝑇 β†’ (mExβ€˜π‘‘) = (mExβ€˜π‘‡))
9 mclsval.e . . . . . . . 8 𝐸 = (mExβ€˜π‘‡)
108, 9eqtr4di 2789 . . . . . . 7 (𝑑 = 𝑇 β†’ (mExβ€˜π‘‘) = 𝐸)
1110pweqd 4619 . . . . . 6 (𝑑 = 𝑇 β†’ 𝒫 (mExβ€˜π‘‘) = 𝒫 𝐸)
12 fveq2 6891 . . . . . . . . . . . . 13 (𝑑 = 𝑇 β†’ (mVHβ€˜π‘‘) = (mVHβ€˜π‘‡))
13 mclsval.h . . . . . . . . . . . . 13 𝐻 = (mVHβ€˜π‘‡)
1412, 13eqtr4di 2789 . . . . . . . . . . . 12 (𝑑 = 𝑇 β†’ (mVHβ€˜π‘‘) = 𝐻)
1514rneqd 5937 . . . . . . . . . . 11 (𝑑 = 𝑇 β†’ ran (mVHβ€˜π‘‘) = ran 𝐻)
1615uneq2d 4163 . . . . . . . . . 10 (𝑑 = 𝑇 β†’ (β„Ž βˆͺ ran (mVHβ€˜π‘‘)) = (β„Ž βˆͺ ran 𝐻))
1716sseq1d 4013 . . . . . . . . 9 (𝑑 = 𝑇 β†’ ((β„Ž βˆͺ ran (mVHβ€˜π‘‘)) βŠ† 𝑐 ↔ (β„Ž βˆͺ ran 𝐻) βŠ† 𝑐))
18 fveq2 6891 . . . . . . . . . . . . . 14 (𝑑 = 𝑇 β†’ (mAxβ€˜π‘‘) = (mAxβ€˜π‘‡))
19 mclsval.a . . . . . . . . . . . . . 14 𝐴 = (mAxβ€˜π‘‡)
2018, 19eqtr4di 2789 . . . . . . . . . . . . 13 (𝑑 = 𝑇 β†’ (mAxβ€˜π‘‘) = 𝐴)
2120eleq2d 2818 . . . . . . . . . . . 12 (𝑑 = 𝑇 β†’ (βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‘) ↔ βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴))
22 fveq2 6891 . . . . . . . . . . . . . . 15 (𝑑 = 𝑇 β†’ (mSubstβ€˜π‘‘) = (mSubstβ€˜π‘‡))
23 mclsval.s . . . . . . . . . . . . . . 15 𝑆 = (mSubstβ€˜π‘‡)
2422, 23eqtr4di 2789 . . . . . . . . . . . . . 14 (𝑑 = 𝑇 β†’ (mSubstβ€˜π‘‘) = 𝑆)
2524rneqd 5937 . . . . . . . . . . . . 13 (𝑑 = 𝑇 β†’ ran (mSubstβ€˜π‘‘) = ran 𝑆)
2615uneq2d 4163 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑇 β†’ (π‘œ βˆͺ ran (mVHβ€˜π‘‘)) = (π‘œ βˆͺ ran 𝐻))
2726imaeq2d 6059 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑇 β†’ (𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) = (𝑠 β€œ (π‘œ βˆͺ ran 𝐻)))
2827sseq1d 4013 . . . . . . . . . . . . . . 15 (𝑑 = 𝑇 β†’ ((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ↔ (𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐))
29 fveq2 6891 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑇 β†’ (mVarsβ€˜π‘‘) = (mVarsβ€˜π‘‡))
30 mclsval.v . . . . . . . . . . . . . . . . . . . . 21 𝑉 = (mVarsβ€˜π‘‡)
3129, 30eqtr4di 2789 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑇 β†’ (mVarsβ€˜π‘‘) = 𝑉)
3214fveq1d 6893 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑇 β†’ ((mVHβ€˜π‘‘)β€˜π‘₯) = (π»β€˜π‘₯))
3332fveq2d 6895 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑇 β†’ (π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯)) = (π‘ β€˜(π»β€˜π‘₯)))
3431, 33fveq12d 6898 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑇 β†’ ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) = (π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))))
3514fveq1d 6893 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑇 β†’ ((mVHβ€˜π‘‘)β€˜π‘¦) = (π»β€˜π‘¦))
3635fveq2d 6895 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑇 β†’ (π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)) = (π‘ β€˜(π»β€˜π‘¦)))
3731, 36fveq12d 6898 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑇 β†’ ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦))) = (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦))))
3834, 37xpeq12d 5707 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑇 β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) = ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))))
3938sseq1d 4013 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑇 β†’ ((((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑 ↔ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑))
4039imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑇 β†’ ((π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑) ↔ (π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)))
41402albidv 1925 . . . . . . . . . . . . . . 15 (𝑑 = 𝑇 β†’ (βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑) ↔ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)))
4228, 41anbi12d 630 . . . . . . . . . . . . . 14 (𝑑 = 𝑇 β†’ (((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) ↔ ((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑))))
4342imbi1d 341 . . . . . . . . . . . . 13 (𝑑 = 𝑇 β†’ ((((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐) ↔ (((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))
4425, 43raleqbidv 3341 . . . . . . . . . . . 12 (𝑑 = 𝑇 β†’ (βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐) ↔ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))
4521, 44imbi12d 344 . . . . . . . . . . 11 (𝑑 = 𝑇 β†’ ((βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‘) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)) ↔ (βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐))))
4645albidv 1922 . . . . . . . . . 10 (𝑑 = 𝑇 β†’ (βˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‘) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)) ↔ βˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐))))
47462albidv 1925 . . . . . . . . 9 (𝑑 = 𝑇 β†’ (βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‘) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)) ↔ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐))))
4817, 47anbi12d 630 . . . . . . . 8 (𝑑 = 𝑇 β†’ (((β„Ž βˆͺ ran (mVHβ€˜π‘‘)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‘) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐))) ↔ ((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))))
4948abbidv 2800 . . . . . . 7 (𝑑 = 𝑇 β†’ {𝑐 ∣ ((β„Ž βˆͺ ran (mVHβ€˜π‘‘)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‘) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} = {𝑐 ∣ ((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))})
5049inteqd 4955 . . . . . 6 (𝑑 = 𝑇 β†’ ∩ {𝑐 ∣ ((β„Ž βˆͺ ran (mVHβ€˜π‘‘)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‘) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} = ∩ {𝑐 ∣ ((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))})
517, 11, 50mpoeq123dv 7487 . . . . 5 (𝑑 = 𝑇 β†’ (𝑑 ∈ 𝒫 (mDVβ€˜π‘‘), β„Ž ∈ 𝒫 (mExβ€˜π‘‘) ↦ ∩ {𝑐 ∣ ((β„Ž βˆͺ ran (mVHβ€˜π‘‘)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‘) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))}) = (𝑑 ∈ 𝒫 𝐷, β„Ž ∈ 𝒫 𝐸 ↦ ∩ {𝑐 ∣ ((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))}))
52 df-mcls 34954 . . . . 5 mCls = (𝑑 ∈ V ↦ (𝑑 ∈ 𝒫 (mDVβ€˜π‘‘), β„Ž ∈ 𝒫 (mExβ€˜π‘‘) ↦ ∩ {𝑐 ∣ ((β„Ž βˆͺ ran (mVHβ€˜π‘‘)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‘) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))}))
535fvexi 6905 . . . . . . 7 𝐷 ∈ V
5453pwex 5378 . . . . . 6 𝒫 𝐷 ∈ V
559fvexi 6905 . . . . . . 7 𝐸 ∈ V
5655pwex 5378 . . . . . 6 𝒫 𝐸 ∈ V
5754, 56mpoex 8070 . . . . 5 (𝑑 ∈ 𝒫 𝐷, β„Ž ∈ 𝒫 𝐸 ↦ ∩ {𝑐 ∣ ((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))}) ∈ V
5851, 52, 57fvmpt 6998 . . . 4 (𝑇 ∈ V β†’ (mClsβ€˜π‘‡) = (𝑑 ∈ 𝒫 𝐷, β„Ž ∈ 𝒫 𝐸 ↦ ∩ {𝑐 ∣ ((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))}))
592, 3, 583syl 18 . . 3 (πœ‘ β†’ (mClsβ€˜π‘‡) = (𝑑 ∈ 𝒫 𝐷, β„Ž ∈ 𝒫 𝐸 ↦ ∩ {𝑐 ∣ ((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))}))
601, 59eqtrid 2783 . 2 (πœ‘ β†’ 𝐢 = (𝑑 ∈ 𝒫 𝐷, β„Ž ∈ 𝒫 𝐸 ↦ ∩ {𝑐 ∣ ((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))}))
61 simprr 770 . . . . . . 7 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ β„Ž = 𝐡)
6261uneq1d 4162 . . . . . 6 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ (β„Ž βˆͺ ran 𝐻) = (𝐡 βˆͺ ran 𝐻))
6362sseq1d 4013 . . . . 5 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ ((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ↔ (𝐡 βˆͺ ran 𝐻) βŠ† 𝑐))
64 simprl 768 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ 𝑑 = 𝐾)
6564sseq2d 4014 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ (((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑 ↔ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾))
6665imbi2d 340 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ ((π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑) ↔ (π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)))
67662albidv 1925 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ (βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑) ↔ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)))
6867anbi2d 628 . . . . . . . . . 10 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ (((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) ↔ ((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾))))
6968imbi1d 341 . . . . . . . . 9 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ ((((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐) ↔ (((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))
7069ralbidv 3176 . . . . . . . 8 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ (βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐) ↔ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))
7170imbi2d 340 . . . . . . 7 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ ((βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)) ↔ (βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐))))
7271albidv 1922 . . . . . 6 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ (βˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)) ↔ βˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐))))
73722albidv 1925 . . . . 5 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ (βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)) ↔ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐))))
7463, 73anbi12d 630 . . . 4 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ (((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐))) ↔ ((𝐡 βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))))
7574abbidv 2800 . . 3 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ {𝑐 ∣ ((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} = {𝑐 ∣ ((𝐡 βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))})
7675inteqd 4955 . 2 ((πœ‘ ∧ (𝑑 = 𝐾 ∧ β„Ž = 𝐡)) β†’ ∩ {𝑐 ∣ ((β„Ž βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} = ∩ {𝑐 ∣ ((𝐡 βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))})
77 mclsval.2 . . 3 (πœ‘ β†’ 𝐾 βŠ† 𝐷)
7853elpw2 5345 . . 3 (𝐾 ∈ 𝒫 𝐷 ↔ 𝐾 βŠ† 𝐷)
7977, 78sylibr 233 . 2 (πœ‘ β†’ 𝐾 ∈ 𝒫 𝐷)
80 mclsval.3 . . 3 (πœ‘ β†’ 𝐡 βŠ† 𝐸)
8155elpw2 5345 . . 3 (𝐡 ∈ 𝒫 𝐸 ↔ 𝐡 βŠ† 𝐸)
8280, 81sylibr 233 . 2 (πœ‘ β†’ 𝐡 ∈ 𝒫 𝐸)
835, 9, 1, 2, 77, 80, 13, 19, 23, 30mclsssvlem 35019 . . 3 (πœ‘ β†’ ∩ {𝑐 ∣ ((𝐡 βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} βŠ† 𝐸)
8455ssex 5321 . . 3 (∩ {𝑐 ∣ ((𝐡 βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} βŠ† 𝐸 β†’ ∩ {𝑐 ∣ ((𝐡 βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} ∈ V)
8583, 84syl 17 . 2 (πœ‘ β†’ ∩ {𝑐 ∣ ((𝐡 βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} ∈ V)
8660, 76, 79, 82, 85ovmpod 7563 1 (πœ‘ β†’ (𝐾𝐢𝐡) = ∩ {𝑐 ∣ ((𝐡 βˆͺ ran 𝐻) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ 𝐴 β†’ βˆ€π‘  ∈ ran 𝑆(((𝑠 β€œ (π‘œ βˆͺ ran 𝐻)) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ ((π‘‰β€˜(π‘ β€˜(π»β€˜π‘₯))) Γ— (π‘‰β€˜(π‘ β€˜(π»β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395  βˆ€wal 1538   = wceq 1540   ∈ wcel 2105  {cab 2708  βˆ€wral 3060  Vcvv 3473   βˆͺ cun 3946   βŠ† wss 3948  π’« cpw 4602  βŸ¨cotp 4636  βˆ© cint 4950   class class class wbr 5148   Γ— cxp 5674  ran crn 5677   β€œ cima 5679  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414  mAxcmax 34922  mExcmex 34924  mDVcmdv 34925  mVarscmvrs 34926  mSubstcmsub 34928  mVHcmvh 34929  mFScmfs 34933  mClscmcls 34934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-word 14472  df-concat 14528  df-s1 14553  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-0g 17394  df-gsum 17395  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-frmd 18772  df-mrex 34943  df-mex 34944  df-mrsub 34947  df-msub 34948  df-mvh 34949  df-mpst 34950  df-msr 34951  df-msta 34952  df-mfs 34953  df-mcls 34954
This theorem is referenced by:  mclsssv  35021  ssmclslem  35022  ss2mcls  35025  mclsax  35026  mclsind  35027
  Copyright terms: Public domain W3C validator