Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsval Structured version   Visualization version   GIF version

Theorem mclsval 32923
Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsval.h 𝐻 = (mVH‘𝑇)
mclsval.a 𝐴 = (mAx‘𝑇)
mclsval.s 𝑆 = (mSubst‘𝑇)
mclsval.v 𝑉 = (mVars‘𝑇)
Assertion
Ref Expression
mclsval (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
Distinct variable groups:   𝑚,𝑐,𝑜,𝑝,𝑠,𝐸   𝑥,𝑐,𝐻,𝑚,𝑜,𝑝,𝑠   𝑦,𝑐,𝐵,𝑚,𝑜,𝑝,𝑠,𝑥   𝐶,𝑚,𝑜,𝑝,𝑠,𝑥   𝐴,𝑐,𝑚,𝑜,𝑝,𝑠   𝑆,𝑐,𝑠,𝑥,𝑦   𝑇,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝜑,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝑉,𝑐,𝑥   𝐾,𝑐,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑦,𝑐)   𝐷(𝑥,𝑦,𝑚,𝑜,𝑠,𝑝,𝑐)   𝑆(𝑚,𝑜,𝑝)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝑉(𝑦,𝑚,𝑜,𝑠,𝑝)

Proof of Theorem mclsval
Dummy variables 𝑑 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mclsval.c . . 3 𝐶 = (mCls‘𝑇)
2 mclsval.1 . . . 4 (𝜑𝑇 ∈ mFS)
3 elex 3459 . . . 4 (𝑇 ∈ mFS → 𝑇 ∈ V)
4 fveq2 6645 . . . . . . . 8 (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇))
5 mclsval.d . . . . . . . 8 𝐷 = (mDV‘𝑇)
64, 5eqtr4di 2851 . . . . . . 7 (𝑡 = 𝑇 → (mDV‘𝑡) = 𝐷)
76pweqd 4516 . . . . . 6 (𝑡 = 𝑇 → 𝒫 (mDV‘𝑡) = 𝒫 𝐷)
8 fveq2 6645 . . . . . . . 8 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
9 mclsval.e . . . . . . . 8 𝐸 = (mEx‘𝑇)
108, 9eqtr4di 2851 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
1110pweqd 4516 . . . . . 6 (𝑡 = 𝑇 → 𝒫 (mEx‘𝑡) = 𝒫 𝐸)
12 fveq2 6645 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (mVH‘𝑡) = (mVH‘𝑇))
13 mclsval.h . . . . . . . . . . . . 13 𝐻 = (mVH‘𝑇)
1412, 13eqtr4di 2851 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (mVH‘𝑡) = 𝐻)
1514rneqd 5772 . . . . . . . . . . 11 (𝑡 = 𝑇 → ran (mVH‘𝑡) = ran 𝐻)
1615uneq2d 4090 . . . . . . . . . 10 (𝑡 = 𝑇 → ( ∪ ran (mVH‘𝑡)) = ( ∪ ran 𝐻))
1716sseq1d 3946 . . . . . . . . 9 (𝑡 = 𝑇 → (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ↔ ( ∪ ran 𝐻) ⊆ 𝑐))
18 fveq2 6645 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (mAx‘𝑡) = (mAx‘𝑇))
19 mclsval.a . . . . . . . . . . . . . 14 𝐴 = (mAx‘𝑇)
2018, 19eqtr4di 2851 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (mAx‘𝑡) = 𝐴)
2120eleq2d 2875 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) ↔ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴))
22 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → (mSubst‘𝑡) = (mSubst‘𝑇))
23 mclsval.s . . . . . . . . . . . . . . 15 𝑆 = (mSubst‘𝑇)
2422, 23eqtr4di 2851 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (mSubst‘𝑡) = 𝑆)
2524rneqd 5772 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ran (mSubst‘𝑡) = ran 𝑆)
2615uneq2d 4090 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → (𝑜 ∪ ran (mVH‘𝑡)) = (𝑜 ∪ ran 𝐻))
2726imaeq2d 5896 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → (𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) = (𝑠 “ (𝑜 ∪ ran 𝐻)))
2827sseq1d 3946 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → ((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ↔ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐))
29 fveq2 6645 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (mVars‘𝑡) = (mVars‘𝑇))
30 mclsval.v . . . . . . . . . . . . . . . . . . . . 21 𝑉 = (mVars‘𝑇)
3129, 30eqtr4di 2851 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (mVars‘𝑡) = 𝑉)
3214fveq1d 6647 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → ((mVH‘𝑡)‘𝑥) = (𝐻𝑥))
3332fveq2d 6649 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (𝑠‘((mVH‘𝑡)‘𝑥)) = (𝑠‘(𝐻𝑥)))
3431, 33fveq12d 6652 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) = (𝑉‘(𝑠‘(𝐻𝑥))))
3514fveq1d 6647 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → ((mVH‘𝑡)‘𝑦) = (𝐻𝑦))
3635fveq2d 6649 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → (𝑠‘((mVH‘𝑡)‘𝑦)) = (𝑠‘(𝐻𝑦)))
3731, 36fveq12d 6652 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦))) = (𝑉‘(𝑠‘(𝐻𝑦))))
3834, 37xpeq12d 5550 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) = ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))))
3938sseq1d 3946 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → ((((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑 ↔ ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑))
4039imbi2d 344 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → ((𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) ↔ (𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)))
41402albidv 1924 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → (∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) ↔ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)))
4228, 41anbi12d 633 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑))))
4342imbi1d 345 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))
4425, 43raleqbidv 3354 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))
4521, 44imbi12d 348 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
4645albidv 1921 . . . . . . . . . 10 (𝑡 = 𝑇 → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
47462albidv 1924 . . . . . . . . 9 (𝑡 = 𝑇 → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))))
4817, 47anbi12d 633 . . . . . . . 8 (𝑡 = 𝑇 → ((( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))) ↔ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))))
4948abbidv 2862 . . . . . . 7 (𝑡 = 𝑇 → {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
5049inteqd 4843 . . . . . 6 (𝑡 = 𝑇 {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
517, 11, 50mpoeq123dv 7208 . . . . 5 (𝑡 = 𝑇 → (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
52 df-mcls 32857 . . . . 5 mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
535fvexi 6659 . . . . . . 7 𝐷 ∈ V
5453pwex 5246 . . . . . 6 𝒫 𝐷 ∈ V
559fvexi 6659 . . . . . . 7 𝐸 ∈ V
5655pwex 5246 . . . . . 6 𝒫 𝐸 ∈ V
5754, 56mpoex 7760 . . . . 5 (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V
5851, 52, 57fvmpt 6745 . . . 4 (𝑇 ∈ V → (mCls‘𝑇) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
592, 3, 583syl 18 . . 3 (𝜑 → (mCls‘𝑇) = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
601, 59syl5eq 2845 . 2 (𝜑𝐶 = (𝑑 ∈ 𝒫 𝐷, ∈ 𝒫 𝐸 {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
61 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → = 𝐵)
6261uneq1d 4089 . . . . . 6 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ( ∪ ran 𝐻) = (𝐵 ∪ ran 𝐻))
6362sseq1d 3946 . . . . 5 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (( ∪ ran 𝐻) ⊆ 𝑐 ↔ (𝐵 ∪ ran 𝐻) ⊆ 𝑐))
64 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → 𝑑 = 𝐾)
6564sseq2d 3947 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑 ↔ ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))
6665imbi2d 344 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑) ↔ (𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
67662albidv 1924 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑) ↔ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
6867anbi2d 631 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
6968imbi1d 345 . . . . . . . . 9 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
7069ralbidv 3162 . . . . . . . 8 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
7170imbi2d 344 . . . . . . 7 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
7271albidv 1921 . . . . . 6 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
73722albidv 1924 . . . . 5 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
7463, 73anbi12d 633 . . . 4 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → ((( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐))) ↔ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))))
7574abbidv 2862 . . 3 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
7675inteqd 4843 . 2 ((𝜑 ∧ (𝑑 = 𝐾 = 𝐵)) → {𝑐 ∣ (( ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))} = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
77 mclsval.2 . . 3 (𝜑𝐾𝐷)
7853elpw2 5212 . . 3 (𝐾 ∈ 𝒫 𝐷𝐾𝐷)
7977, 78sylibr 237 . 2 (𝜑𝐾 ∈ 𝒫 𝐷)
80 mclsval.3 . . 3 (𝜑𝐵𝐸)
8155elpw2 5212 . . 3 (𝐵 ∈ 𝒫 𝐸𝐵𝐸)
8280, 81sylibr 237 . 2 (𝜑𝐵 ∈ 𝒫 𝐸)
835, 9, 1, 2, 77, 80, 13, 19, 23, 30mclsssvlem 32922 . . 3 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝐸)
8455ssex 5189 . . 3 ( {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝐸 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ∈ V)
8583, 84syl 17 . 2 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ∈ V)
8660, 76, 79, 82, 85ovmpod 7281 1 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻𝑥))) × (𝑉‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536   = wceq 1538  wcel 2111  {cab 2776  wral 3106  Vcvv 3441  cun 3879  wss 3881  𝒫 cpw 4497  cotp 4533   cint 4838   class class class wbr 5030   × cxp 5517  ran crn 5520  cima 5522  cfv 6324  (class class class)co 7135  cmpo 7137  mAxcmax 32825  mExcmex 32827  mDVcmdv 32828  mVarscmvrs 32829  mSubstcmsub 32831  mVHcmvh 32832  mFScmfs 32836  mClscmcls 32837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-frmd 18006  df-mrex 32846  df-mex 32847  df-mrsub 32850  df-msub 32851  df-mvh 32852  df-mpst 32853  df-msr 32854  df-msta 32855  df-mfs 32856  df-mcls 32857
This theorem is referenced by:  mclsssv  32924  ssmclslem  32925  ss2mcls  32928  mclsax  32929  mclsind  32930
  Copyright terms: Public domain W3C validator