Step | Hyp | Ref
| Expression |
1 | | mclsval.c |
. . 3
⊢ 𝐶 = (mCls‘𝑇) |
2 | | mclsval.1 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ mFS) |
3 | | elex 3440 |
. . . 4
⊢ (𝑇 ∈ mFS → 𝑇 ∈ V) |
4 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇)) |
5 | | mclsval.d |
. . . . . . . 8
⊢ 𝐷 = (mDV‘𝑇) |
6 | 4, 5 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (mDV‘𝑡) = 𝐷) |
7 | 6 | pweqd 4549 |
. . . . . 6
⊢ (𝑡 = 𝑇 → 𝒫 (mDV‘𝑡) = 𝒫 𝐷) |
8 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇)) |
9 | | mclsval.e |
. . . . . . . 8
⊢ 𝐸 = (mEx‘𝑇) |
10 | 8, 9 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸) |
11 | 10 | pweqd 4549 |
. . . . . 6
⊢ (𝑡 = 𝑇 → 𝒫 (mEx‘𝑡) = 𝒫 𝐸) |
12 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → (mVH‘𝑡) = (mVH‘𝑇)) |
13 | | mclsval.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = (mVH‘𝑇) |
14 | 12, 13 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → (mVH‘𝑡) = 𝐻) |
15 | 14 | rneqd 5836 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → ran (mVH‘𝑡) = ran 𝐻) |
16 | 15 | uneq2d 4093 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (ℎ ∪ ran (mVH‘𝑡)) = (ℎ ∪ ran 𝐻)) |
17 | 16 | sseq1d 3948 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ↔ (ℎ ∪ ran 𝐻) ⊆ 𝑐)) |
18 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑇 → (mAx‘𝑡) = (mAx‘𝑇)) |
19 | | mclsval.a |
. . . . . . . . . . . . . 14
⊢ 𝐴 = (mAx‘𝑇) |
20 | 18, 19 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → (mAx‘𝑡) = 𝐴) |
21 | 20 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) ↔ 〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴)) |
22 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑇 → (mSubst‘𝑡) = (mSubst‘𝑇)) |
23 | | mclsval.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (mSubst‘𝑇) |
24 | 22, 23 | eqtr4di 2797 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑇 → (mSubst‘𝑡) = 𝑆) |
25 | 24 | rneqd 5836 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → ran (mSubst‘𝑡) = ran 𝑆) |
26 | 15 | uneq2d 4093 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑇 → (𝑜 ∪ ran (mVH‘𝑡)) = (𝑜 ∪ ran 𝐻)) |
27 | 26 | imaeq2d 5958 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑇 → (𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) = (𝑠 “ (𝑜 ∪ ran 𝐻))) |
28 | 27 | sseq1d 3948 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑇 → ((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ↔ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐)) |
29 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑇 → (mVars‘𝑡) = (mVars‘𝑇)) |
30 | | mclsval.v |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑉 = (mVars‘𝑇) |
31 | 29, 30 | eqtr4di 2797 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑇 → (mVars‘𝑡) = 𝑉) |
32 | 14 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑇 → ((mVH‘𝑡)‘𝑥) = (𝐻‘𝑥)) |
33 | 32 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑇 → (𝑠‘((mVH‘𝑡)‘𝑥)) = (𝑠‘(𝐻‘𝑥))) |
34 | 31, 33 | fveq12d 6763 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑇 → ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) = (𝑉‘(𝑠‘(𝐻‘𝑥)))) |
35 | 14 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑇 → ((mVH‘𝑡)‘𝑦) = (𝐻‘𝑦)) |
36 | 35 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑇 → (𝑠‘((mVH‘𝑡)‘𝑦)) = (𝑠‘(𝐻‘𝑦))) |
37 | 31, 36 | fveq12d 6763 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑇 → ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦))) = (𝑉‘(𝑠‘(𝐻‘𝑦)))) |
38 | 34, 37 | xpeq12d 5611 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑇 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) = ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦))))) |
39 | 38 | sseq1d 3948 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑇 → ((((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑 ↔ ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) |
40 | 39 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑇 → ((𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) ↔ (𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑))) |
41 | 40 | 2albidv 1927 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑇 → (∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) ↔ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑))) |
42 | 28, 41 | anbi12d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑇 → (((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)))) |
43 | 42 | imbi1d 341 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → ((((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐))) |
44 | 25, 43 | raleqbidv 3327 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → (∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐))) |
45 | 21, 44 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → ((〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)) ↔ (〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))) |
46 | 45 | albidv 1924 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)) ↔ ∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))) |
47 | 46 | 2albidv 1927 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)) ↔ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))) |
48 | 17, 47 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐))) ↔ ((ℎ ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐))))) |
49 | 48 | abbidv 2808 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → {𝑐 ∣ ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))} = {𝑐 ∣ ((ℎ ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
50 | 49 | inteqd 4881 |
. . . . . 6
⊢ (𝑡 = 𝑇 → ∩ {𝑐 ∣ ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))} = ∩ {𝑐 ∣ ((ℎ ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
51 | 7, 11, 50 | mpoeq123dv 7328 |
. . . . 5
⊢ (𝑡 = 𝑇 → (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))}) = (𝑑 ∈ 𝒫 𝐷, ℎ ∈ 𝒫 𝐸 ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) |
52 | | df-mcls 33359 |
. . . . 5
⊢ mCls =
(𝑡 ∈ V ↦ (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) |
53 | 5 | fvexi 6770 |
. . . . . . 7
⊢ 𝐷 ∈ V |
54 | 53 | pwex 5298 |
. . . . . 6
⊢ 𝒫
𝐷 ∈ V |
55 | 9 | fvexi 6770 |
. . . . . . 7
⊢ 𝐸 ∈ V |
56 | 55 | pwex 5298 |
. . . . . 6
⊢ 𝒫
𝐸 ∈ V |
57 | 54, 56 | mpoex 7893 |
. . . . 5
⊢ (𝑑 ∈ 𝒫 𝐷, ℎ ∈ 𝒫 𝐸 ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))}) ∈ V |
58 | 51, 52, 57 | fvmpt 6857 |
. . . 4
⊢ (𝑇 ∈ V →
(mCls‘𝑇) = (𝑑 ∈ 𝒫 𝐷, ℎ ∈ 𝒫 𝐸 ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) |
59 | 2, 3, 58 | 3syl 18 |
. . 3
⊢ (𝜑 → (mCls‘𝑇) = (𝑑 ∈ 𝒫 𝐷, ℎ ∈ 𝒫 𝐸 ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) |
60 | 1, 59 | syl5eq 2791 |
. 2
⊢ (𝜑 → 𝐶 = (𝑑 ∈ 𝒫 𝐷, ℎ ∈ 𝒫 𝐸 ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) |
61 | | simprr 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → ℎ = 𝐵) |
62 | 61 | uneq1d 4092 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → (ℎ ∪ ran 𝐻) = (𝐵 ∪ ran 𝐻)) |
63 | 62 | sseq1d 3948 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → ((ℎ ∪ ran 𝐻) ⊆ 𝑐 ↔ (𝐵 ∪ ran 𝐻) ⊆ 𝑐)) |
64 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → 𝑑 = 𝐾) |
65 | 64 | sseq2d 3949 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → (((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑 ↔ ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) |
66 | 65 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → ((𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑) ↔ (𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾))) |
67 | 66 | 2albidv 1927 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → (∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑) ↔ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾))) |
68 | 67 | anbi2d 628 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)))) |
69 | 68 | imbi1d 341 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) |
70 | 69 | ralbidv 3120 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → (∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) |
71 | 70 | imbi2d 340 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → ((〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)) ↔ (〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))) |
72 | 71 | albidv 1924 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → (∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)) ↔ ∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))) |
73 | 72 | 2albidv 1927 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → (∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)) ↔ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))) |
74 | 63, 73 | anbi12d 630 |
. . . 4
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → (((ℎ ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐))) ↔ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))))) |
75 | 74 | abbidv 2808 |
. . 3
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → {𝑐 ∣ ((ℎ ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))} = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
76 | 75 | inteqd 4881 |
. 2
⊢ ((𝜑 ∧ (𝑑 = 𝐾 ∧ ℎ = 𝐵)) → ∩
{𝑐 ∣ ((ℎ ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))} = ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
77 | | mclsval.2 |
. . 3
⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
78 | 53 | elpw2 5264 |
. . 3
⊢ (𝐾 ∈ 𝒫 𝐷 ↔ 𝐾 ⊆ 𝐷) |
79 | 77, 78 | sylibr 233 |
. 2
⊢ (𝜑 → 𝐾 ∈ 𝒫 𝐷) |
80 | | mclsval.3 |
. . 3
⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
81 | 55 | elpw2 5264 |
. . 3
⊢ (𝐵 ∈ 𝒫 𝐸 ↔ 𝐵 ⊆ 𝐸) |
82 | 80, 81 | sylibr 233 |
. 2
⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐸) |
83 | 5, 9, 1, 2, 77, 80, 13, 19, 23, 30 | mclsssvlem 33424 |
. . 3
⊢ (𝜑 → ∩ {𝑐
∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝐸) |
84 | 55 | ssex 5240 |
. . 3
⊢ (∩ {𝑐
∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝐸 → ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ∈ V) |
85 | 83, 84 | syl 17 |
. 2
⊢ (𝜑 → ∩ {𝑐
∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ∈ V) |
86 | 60, 76, 79, 82, 85 | ovmpod 7403 |
1
⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |