Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsrcl Structured version   Visualization version   GIF version

Theorem mclsrcl 35588
Description: Reverse closure for the closure function. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
Assertion
Ref Expression
mclsrcl (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾𝐷𝐵𝐸))

Proof of Theorem mclsrcl
Dummy variables 𝑑 𝑡 𝑐 𝑚 𝑜 𝑝 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4320 . . 3 (𝐴 ∈ (𝐾𝐶𝐵) → ¬ (𝐾𝐶𝐵) = ∅)
2 mclsval.c . . . . . 6 𝐶 = (mCls‘𝑇)
3 fvprc 6873 . . . . . 6 𝑇 ∈ V → (mCls‘𝑇) = ∅)
42, 3eqtrid 2783 . . . . 5 𝑇 ∈ V → 𝐶 = ∅)
54oveqd 7427 . . . 4 𝑇 ∈ V → (𝐾𝐶𝐵) = (𝐾𝐵))
6 0ov 7447 . . . 4 (𝐾𝐵) = ∅
75, 6eqtrdi 2787 . . 3 𝑇 ∈ V → (𝐾𝐶𝐵) = ∅)
81, 7nsyl2 141 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝑇 ∈ V)
9 fveq2 6881 . . . . . . . . 9 (𝑡 = 𝑇 → (mCls‘𝑡) = (mCls‘𝑇))
109, 2eqtr4di 2789 . . . . . . . 8 (𝑡 = 𝑇 → (mCls‘𝑡) = 𝐶)
1110oveqd 7427 . . . . . . 7 (𝑡 = 𝑇 → (𝐾(mCls‘𝑡)𝐵) = (𝐾𝐶𝐵))
1211eleq2d 2821 . . . . . 6 (𝑡 = 𝑇 → (𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) ↔ 𝐴 ∈ (𝐾𝐶𝐵)))
13 fvex 6894 . . . . . . . . 9 (mDV‘𝑡) ∈ V
1413elpw2 5309 . . . . . . . 8 (𝐾 ∈ 𝒫 (mDV‘𝑡) ↔ 𝐾 ⊆ (mDV‘𝑡))
15 fveq2 6881 . . . . . . . . . 10 (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇))
16 mclsval.d . . . . . . . . . 10 𝐷 = (mDV‘𝑇)
1715, 16eqtr4di 2789 . . . . . . . . 9 (𝑡 = 𝑇 → (mDV‘𝑡) = 𝐷)
1817sseq2d 3996 . . . . . . . 8 (𝑡 = 𝑇 → (𝐾 ⊆ (mDV‘𝑡) ↔ 𝐾𝐷))
1914, 18bitrid 283 . . . . . . 7 (𝑡 = 𝑇 → (𝐾 ∈ 𝒫 (mDV‘𝑡) ↔ 𝐾𝐷))
20 fvex 6894 . . . . . . . . 9 (mEx‘𝑡) ∈ V
2120elpw2 5309 . . . . . . . 8 (𝐵 ∈ 𝒫 (mEx‘𝑡) ↔ 𝐵 ⊆ (mEx‘𝑡))
22 fveq2 6881 . . . . . . . . . 10 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
23 mclsval.e . . . . . . . . . 10 𝐸 = (mEx‘𝑇)
2422, 23eqtr4di 2789 . . . . . . . . 9 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
2524sseq2d 3996 . . . . . . . 8 (𝑡 = 𝑇 → (𝐵 ⊆ (mEx‘𝑡) ↔ 𝐵𝐸))
2621, 25bitrid 283 . . . . . . 7 (𝑡 = 𝑇 → (𝐵 ∈ 𝒫 (mEx‘𝑡) ↔ 𝐵𝐸))
2719, 26anbi12d 632 . . . . . 6 (𝑡 = 𝑇 → ((𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡)) ↔ (𝐾𝐷𝐵𝐸)))
2812, 27imbi12d 344 . . . . 5 (𝑡 = 𝑇 → ((𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) → (𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡))) ↔ (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸))))
29 vex 3468 . . . . . . 7 𝑡 ∈ V
3013pwex 5355 . . . . . . . 8 𝒫 (mDV‘𝑡) ∈ V
3120pwex 5355 . . . . . . . 8 𝒫 (mEx‘𝑡) ∈ V
3230, 31mpoex 8083 . . . . . . 7 (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V
33 df-mcls 35524 . . . . . . . 8 mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
3433fvmpt2 7002 . . . . . . 7 ((𝑡 ∈ V ∧ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V) → (mCls‘𝑡) = (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
3529, 32, 34mp2an 692 . . . . . 6 (mCls‘𝑡) = (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
3635elmpocl 7653 . . . . 5 (𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) → (𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡)))
3728, 36vtoclg 3538 . . . 4 (𝑇 ∈ V → (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸)))
388, 37mpcom 38 . . 3 (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸))
3938simpld 494 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝐾𝐷)
4038simprd 495 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝐵𝐸)
418, 39, 403jca 1128 1 (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾𝐷𝐵𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {cab 2714  wral 3052  Vcvv 3464  cun 3929  wss 3931  c0 4313  𝒫 cpw 4580  cotp 4614   cint 4927   class class class wbr 5124   × cxp 5657  ran crn 5660  cima 5662  cfv 6536  (class class class)co 7410  cmpo 7412  mAxcmax 35492  mExcmex 35494  mDVcmdv 35495  mVarscmvrs 35496  mSubstcmsub 35498  mVHcmvh 35499  mClscmcls 35504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-mcls 35524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator