Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsrcl Structured version   Visualization version   GIF version

Theorem mclsrcl 35548
Description: Reverse closure for the closure function. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
Assertion
Ref Expression
mclsrcl (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾𝐷𝐵𝐸))

Proof of Theorem mclsrcl
Dummy variables 𝑑 𝑡 𝑐 𝑚 𝑜 𝑝 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4303 . . 3 (𝐴 ∈ (𝐾𝐶𝐵) → ¬ (𝐾𝐶𝐵) = ∅)
2 mclsval.c . . . . . 6 𝐶 = (mCls‘𝑇)
3 fvprc 6850 . . . . . 6 𝑇 ∈ V → (mCls‘𝑇) = ∅)
42, 3eqtrid 2776 . . . . 5 𝑇 ∈ V → 𝐶 = ∅)
54oveqd 7404 . . . 4 𝑇 ∈ V → (𝐾𝐶𝐵) = (𝐾𝐵))
6 0ov 7424 . . . 4 (𝐾𝐵) = ∅
75, 6eqtrdi 2780 . . 3 𝑇 ∈ V → (𝐾𝐶𝐵) = ∅)
81, 7nsyl2 141 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝑇 ∈ V)
9 fveq2 6858 . . . . . . . . 9 (𝑡 = 𝑇 → (mCls‘𝑡) = (mCls‘𝑇))
109, 2eqtr4di 2782 . . . . . . . 8 (𝑡 = 𝑇 → (mCls‘𝑡) = 𝐶)
1110oveqd 7404 . . . . . . 7 (𝑡 = 𝑇 → (𝐾(mCls‘𝑡)𝐵) = (𝐾𝐶𝐵))
1211eleq2d 2814 . . . . . 6 (𝑡 = 𝑇 → (𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) ↔ 𝐴 ∈ (𝐾𝐶𝐵)))
13 fvex 6871 . . . . . . . . 9 (mDV‘𝑡) ∈ V
1413elpw2 5289 . . . . . . . 8 (𝐾 ∈ 𝒫 (mDV‘𝑡) ↔ 𝐾 ⊆ (mDV‘𝑡))
15 fveq2 6858 . . . . . . . . . 10 (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇))
16 mclsval.d . . . . . . . . . 10 𝐷 = (mDV‘𝑇)
1715, 16eqtr4di 2782 . . . . . . . . 9 (𝑡 = 𝑇 → (mDV‘𝑡) = 𝐷)
1817sseq2d 3979 . . . . . . . 8 (𝑡 = 𝑇 → (𝐾 ⊆ (mDV‘𝑡) ↔ 𝐾𝐷))
1914, 18bitrid 283 . . . . . . 7 (𝑡 = 𝑇 → (𝐾 ∈ 𝒫 (mDV‘𝑡) ↔ 𝐾𝐷))
20 fvex 6871 . . . . . . . . 9 (mEx‘𝑡) ∈ V
2120elpw2 5289 . . . . . . . 8 (𝐵 ∈ 𝒫 (mEx‘𝑡) ↔ 𝐵 ⊆ (mEx‘𝑡))
22 fveq2 6858 . . . . . . . . . 10 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
23 mclsval.e . . . . . . . . . 10 𝐸 = (mEx‘𝑇)
2422, 23eqtr4di 2782 . . . . . . . . 9 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
2524sseq2d 3979 . . . . . . . 8 (𝑡 = 𝑇 → (𝐵 ⊆ (mEx‘𝑡) ↔ 𝐵𝐸))
2621, 25bitrid 283 . . . . . . 7 (𝑡 = 𝑇 → (𝐵 ∈ 𝒫 (mEx‘𝑡) ↔ 𝐵𝐸))
2719, 26anbi12d 632 . . . . . 6 (𝑡 = 𝑇 → ((𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡)) ↔ (𝐾𝐷𝐵𝐸)))
2812, 27imbi12d 344 . . . . 5 (𝑡 = 𝑇 → ((𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) → (𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡))) ↔ (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸))))
29 vex 3451 . . . . . . 7 𝑡 ∈ V
3013pwex 5335 . . . . . . . 8 𝒫 (mDV‘𝑡) ∈ V
3120pwex 5335 . . . . . . . 8 𝒫 (mEx‘𝑡) ∈ V
3230, 31mpoex 8058 . . . . . . 7 (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V
33 df-mcls 35484 . . . . . . . 8 mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
3433fvmpt2 6979 . . . . . . 7 ((𝑡 ∈ V ∧ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V) → (mCls‘𝑡) = (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
3529, 32, 34mp2an 692 . . . . . 6 (mCls‘𝑡) = (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
3635elmpocl 7630 . . . . 5 (𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) → (𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡)))
3728, 36vtoclg 3520 . . . 4 (𝑇 ∈ V → (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸)))
388, 37mpcom 38 . . 3 (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸))
3938simpld 494 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝐾𝐷)
4038simprd 495 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝐵𝐸)
418, 39, 403jca 1128 1 (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾𝐷𝐵𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3447  cun 3912  wss 3914  c0 4296  𝒫 cpw 4563  cotp 4597   cint 4910   class class class wbr 5107   × cxp 5636  ran crn 5639  cima 5641  cfv 6511  (class class class)co 7387  cmpo 7389  mAxcmax 35452  mExcmex 35454  mDVcmdv 35455  mVarscmvrs 35456  mSubstcmsub 35458  mVHcmvh 35459  mClscmcls 35464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-mcls 35484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator