| Step | Hyp | Ref
| Expression |
| 1 | | n0i 4320 |
. . 3
⊢ (𝐴 ∈ (𝐾𝐶𝐵) → ¬ (𝐾𝐶𝐵) = ∅) |
| 2 | | mclsval.c |
. . . . . 6
⊢ 𝐶 = (mCls‘𝑇) |
| 3 | | fvprc 6873 |
. . . . . 6
⊢ (¬
𝑇 ∈ V →
(mCls‘𝑇) =
∅) |
| 4 | 2, 3 | eqtrid 2783 |
. . . . 5
⊢ (¬
𝑇 ∈ V → 𝐶 = ∅) |
| 5 | 4 | oveqd 7427 |
. . . 4
⊢ (¬
𝑇 ∈ V → (𝐾𝐶𝐵) = (𝐾∅𝐵)) |
| 6 | | 0ov 7447 |
. . . 4
⊢ (𝐾∅𝐵) = ∅ |
| 7 | 5, 6 | eqtrdi 2787 |
. . 3
⊢ (¬
𝑇 ∈ V → (𝐾𝐶𝐵) = ∅) |
| 8 | 1, 7 | nsyl2 141 |
. 2
⊢ (𝐴 ∈ (𝐾𝐶𝐵) → 𝑇 ∈ V) |
| 9 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (mCls‘𝑡) = (mCls‘𝑇)) |
| 10 | 9, 2 | eqtr4di 2789 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (mCls‘𝑡) = 𝐶) |
| 11 | 10 | oveqd 7427 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (𝐾(mCls‘𝑡)𝐵) = (𝐾𝐶𝐵)) |
| 12 | 11 | eleq2d 2821 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) ↔ 𝐴 ∈ (𝐾𝐶𝐵))) |
| 13 | | fvex 6894 |
. . . . . . . . 9
⊢
(mDV‘𝑡) ∈
V |
| 14 | 13 | elpw2 5309 |
. . . . . . . 8
⊢ (𝐾 ∈ 𝒫
(mDV‘𝑡) ↔ 𝐾 ⊆ (mDV‘𝑡)) |
| 15 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇)) |
| 16 | | mclsval.d |
. . . . . . . . . 10
⊢ 𝐷 = (mDV‘𝑇) |
| 17 | 15, 16 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (mDV‘𝑡) = 𝐷) |
| 18 | 17 | sseq2d 3996 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (𝐾 ⊆ (mDV‘𝑡) ↔ 𝐾 ⊆ 𝐷)) |
| 19 | 14, 18 | bitrid 283 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (𝐾 ∈ 𝒫 (mDV‘𝑡) ↔ 𝐾 ⊆ 𝐷)) |
| 20 | | fvex 6894 |
. . . . . . . . 9
⊢
(mEx‘𝑡) ∈
V |
| 21 | 20 | elpw2 5309 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝒫
(mEx‘𝑡) ↔ 𝐵 ⊆ (mEx‘𝑡)) |
| 22 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇)) |
| 23 | | mclsval.e |
. . . . . . . . . 10
⊢ 𝐸 = (mEx‘𝑇) |
| 24 | 22, 23 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸) |
| 25 | 24 | sseq2d 3996 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (𝐵 ⊆ (mEx‘𝑡) ↔ 𝐵 ⊆ 𝐸)) |
| 26 | 21, 25 | bitrid 283 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (𝐵 ∈ 𝒫 (mEx‘𝑡) ↔ 𝐵 ⊆ 𝐸)) |
| 27 | 19, 26 | anbi12d 632 |
. . . . . 6
⊢ (𝑡 = 𝑇 → ((𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡)) ↔ (𝐾 ⊆ 𝐷 ∧ 𝐵 ⊆ 𝐸))) |
| 28 | 12, 27 | imbi12d 344 |
. . . . 5
⊢ (𝑡 = 𝑇 → ((𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) → (𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡))) ↔ (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾 ⊆ 𝐷 ∧ 𝐵 ⊆ 𝐸)))) |
| 29 | | vex 3468 |
. . . . . . 7
⊢ 𝑡 ∈ V |
| 30 | 13 | pwex 5355 |
. . . . . . . 8
⊢ 𝒫
(mDV‘𝑡) ∈
V |
| 31 | 20 | pwex 5355 |
. . . . . . . 8
⊢ 𝒫
(mEx‘𝑡) ∈
V |
| 32 | 30, 31 | mpoex 8083 |
. . . . . . 7
⊢ (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))}) ∈ V |
| 33 | | df-mcls 35524 |
. . . . . . . 8
⊢ mCls =
(𝑡 ∈ V ↦ (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) |
| 34 | 33 | fvmpt2 7002 |
. . . . . . 7
⊢ ((𝑡 ∈ V ∧ (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))}) ∈ V) → (mCls‘𝑡) = (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) |
| 35 | 29, 32, 34 | mp2an 692 |
. . . . . 6
⊢
(mCls‘𝑡) =
(𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
| 36 | 35 | elmpocl 7653 |
. . . . 5
⊢ (𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) → (𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡))) |
| 37 | 28, 36 | vtoclg 3538 |
. . . 4
⊢ (𝑇 ∈ V → (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾 ⊆ 𝐷 ∧ 𝐵 ⊆ 𝐸))) |
| 38 | 8, 37 | mpcom 38 |
. . 3
⊢ (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾 ⊆ 𝐷 ∧ 𝐵 ⊆ 𝐸)) |
| 39 | 38 | simpld 494 |
. 2
⊢ (𝐴 ∈ (𝐾𝐶𝐵) → 𝐾 ⊆ 𝐷) |
| 40 | 38 | simprd 495 |
. 2
⊢ (𝐴 ∈ (𝐾𝐶𝐵) → 𝐵 ⊆ 𝐸) |
| 41 | 8, 39, 40 | 3jca 1128 |
1
⊢ (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾 ⊆ 𝐷 ∧ 𝐵 ⊆ 𝐸)) |