Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsrcl Structured version   Visualization version   GIF version

Theorem mclsrcl 35567
Description: Reverse closure for the closure function. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
Assertion
Ref Expression
mclsrcl (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾𝐷𝐵𝐸))

Proof of Theorem mclsrcl
Dummy variables 𝑑 𝑡 𝑐 𝑚 𝑜 𝑝 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4339 . . 3 (𝐴 ∈ (𝐾𝐶𝐵) → ¬ (𝐾𝐶𝐵) = ∅)
2 mclsval.c . . . . . 6 𝐶 = (mCls‘𝑇)
3 fvprc 6897 . . . . . 6 𝑇 ∈ V → (mCls‘𝑇) = ∅)
42, 3eqtrid 2788 . . . . 5 𝑇 ∈ V → 𝐶 = ∅)
54oveqd 7449 . . . 4 𝑇 ∈ V → (𝐾𝐶𝐵) = (𝐾𝐵))
6 0ov 7469 . . . 4 (𝐾𝐵) = ∅
75, 6eqtrdi 2792 . . 3 𝑇 ∈ V → (𝐾𝐶𝐵) = ∅)
81, 7nsyl2 141 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝑇 ∈ V)
9 fveq2 6905 . . . . . . . . 9 (𝑡 = 𝑇 → (mCls‘𝑡) = (mCls‘𝑇))
109, 2eqtr4di 2794 . . . . . . . 8 (𝑡 = 𝑇 → (mCls‘𝑡) = 𝐶)
1110oveqd 7449 . . . . . . 7 (𝑡 = 𝑇 → (𝐾(mCls‘𝑡)𝐵) = (𝐾𝐶𝐵))
1211eleq2d 2826 . . . . . 6 (𝑡 = 𝑇 → (𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) ↔ 𝐴 ∈ (𝐾𝐶𝐵)))
13 fvex 6918 . . . . . . . . 9 (mDV‘𝑡) ∈ V
1413elpw2 5333 . . . . . . . 8 (𝐾 ∈ 𝒫 (mDV‘𝑡) ↔ 𝐾 ⊆ (mDV‘𝑡))
15 fveq2 6905 . . . . . . . . . 10 (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇))
16 mclsval.d . . . . . . . . . 10 𝐷 = (mDV‘𝑇)
1715, 16eqtr4di 2794 . . . . . . . . 9 (𝑡 = 𝑇 → (mDV‘𝑡) = 𝐷)
1817sseq2d 4015 . . . . . . . 8 (𝑡 = 𝑇 → (𝐾 ⊆ (mDV‘𝑡) ↔ 𝐾𝐷))
1914, 18bitrid 283 . . . . . . 7 (𝑡 = 𝑇 → (𝐾 ∈ 𝒫 (mDV‘𝑡) ↔ 𝐾𝐷))
20 fvex 6918 . . . . . . . . 9 (mEx‘𝑡) ∈ V
2120elpw2 5333 . . . . . . . 8 (𝐵 ∈ 𝒫 (mEx‘𝑡) ↔ 𝐵 ⊆ (mEx‘𝑡))
22 fveq2 6905 . . . . . . . . . 10 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
23 mclsval.e . . . . . . . . . 10 𝐸 = (mEx‘𝑇)
2422, 23eqtr4di 2794 . . . . . . . . 9 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
2524sseq2d 4015 . . . . . . . 8 (𝑡 = 𝑇 → (𝐵 ⊆ (mEx‘𝑡) ↔ 𝐵𝐸))
2621, 25bitrid 283 . . . . . . 7 (𝑡 = 𝑇 → (𝐵 ∈ 𝒫 (mEx‘𝑡) ↔ 𝐵𝐸))
2719, 26anbi12d 632 . . . . . 6 (𝑡 = 𝑇 → ((𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡)) ↔ (𝐾𝐷𝐵𝐸)))
2812, 27imbi12d 344 . . . . 5 (𝑡 = 𝑇 → ((𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) → (𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡))) ↔ (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸))))
29 vex 3483 . . . . . . 7 𝑡 ∈ V
3013pwex 5379 . . . . . . . 8 𝒫 (mDV‘𝑡) ∈ V
3120pwex 5379 . . . . . . . 8 𝒫 (mEx‘𝑡) ∈ V
3230, 31mpoex 8105 . . . . . . 7 (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V
33 df-mcls 35503 . . . . . . . 8 mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
3433fvmpt2 7026 . . . . . . 7 ((𝑡 ∈ V ∧ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}) ∈ V) → (mCls‘𝑡) = (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
3529, 32, 34mp2an 692 . . . . . 6 (mCls‘𝑡) = (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))})
3635elmpocl 7675 . . . . 5 (𝐴 ∈ (𝐾(mCls‘𝑡)𝐵) → (𝐾 ∈ 𝒫 (mDV‘𝑡) ∧ 𝐵 ∈ 𝒫 (mEx‘𝑡)))
3728, 36vtoclg 3553 . . . 4 (𝑇 ∈ V → (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸)))
388, 37mpcom 38 . . 3 (𝐴 ∈ (𝐾𝐶𝐵) → (𝐾𝐷𝐵𝐸))
3938simpld 494 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝐾𝐷)
4038simprd 495 . 2 (𝐴 ∈ (𝐾𝐶𝐵) → 𝐵𝐸)
418, 39, 403jca 1128 1 (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾𝐷𝐵𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1537   = wceq 1539  wcel 2107  {cab 2713  wral 3060  Vcvv 3479  cun 3948  wss 3950  c0 4332  𝒫 cpw 4599  cotp 4633   cint 4945   class class class wbr 5142   × cxp 5682  ran crn 5685  cima 5687  cfv 6560  (class class class)co 7432  cmpo 7434  mAxcmax 35471  mExcmex 35473  mDVcmdv 35474  mVarscmvrs 35475  mSubstcmsub 35477  mVHcmvh 35478  mClscmcls 35483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-mcls 35503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator