Detailed syntax breakdown of Definition df-meas
| Step | Hyp | Ref
| Expression |
| 1 | | cmeas 34174 |
. 2
class
measures |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | csiga 34087 |
. . . . 5
class
sigAlgebra |
| 4 | 3 | crn 5684 |
. . . 4
class ran
sigAlgebra |
| 5 | 4 | cuni 4905 |
. . 3
class ∪ ran sigAlgebra |
| 6 | 2 | cv 1539 |
. . . . . 6
class 𝑠 |
| 7 | | cc0 11151 |
. . . . . . 7
class
0 |
| 8 | | cpnf 11288 |
. . . . . . 7
class
+∞ |
| 9 | | cicc 13386 |
. . . . . . 7
class
[,] |
| 10 | 7, 8, 9 | co 7429 |
. . . . . 6
class
(0[,]+∞) |
| 11 | | vm |
. . . . . . 7
setvar 𝑚 |
| 12 | 11 | cv 1539 |
. . . . . 6
class 𝑚 |
| 13 | 6, 10, 12 | wf 6555 |
. . . . 5
wff 𝑚:𝑠⟶(0[,]+∞) |
| 14 | | c0 4332 |
. . . . . . 7
class
∅ |
| 15 | 14, 12 | cfv 6559 |
. . . . . 6
class (𝑚‘∅) |
| 16 | 15, 7 | wceq 1540 |
. . . . 5
wff (𝑚‘∅) =
0 |
| 17 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 18 | 17 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 19 | | com 7883 |
. . . . . . . . 9
class
ω |
| 20 | | cdom 8979 |
. . . . . . . . 9
class
≼ |
| 21 | 18, 19, 20 | wbr 5141 |
. . . . . . . 8
wff 𝑥 ≼
ω |
| 22 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 23 | 22 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 24 | 22, 18, 23 | wdisj 5108 |
. . . . . . . 8
wff Disj
𝑦 ∈ 𝑥 𝑦 |
| 25 | 21, 24 | wa 395 |
. . . . . . 7
wff (𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) |
| 26 | 18 | cuni 4905 |
. . . . . . . . 9
class ∪ 𝑥 |
| 27 | 26, 12 | cfv 6559 |
. . . . . . . 8
class (𝑚‘∪ 𝑥) |
| 28 | 23, 12 | cfv 6559 |
. . . . . . . . 9
class (𝑚‘𝑦) |
| 29 | 18, 28, 22 | cesum 34006 |
. . . . . . . 8
class
Σ*𝑦
∈ 𝑥(𝑚‘𝑦) |
| 30 | 27, 29 | wceq 1540 |
. . . . . . 7
wff (𝑚‘∪ 𝑥) =
Σ*𝑦 ∈
𝑥(𝑚‘𝑦) |
| 31 | 25, 30 | wi 4 |
. . . . . 6
wff ((𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)) |
| 32 | 6 | cpw 4598 |
. . . . . 6
class 𝒫
𝑠 |
| 33 | 31, 17, 32 | wral 3060 |
. . . . 5
wff
∀𝑥 ∈
𝒫 𝑠((𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)) |
| 34 | 13, 16, 33 | w3a 1087 |
. . . 4
wff (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))) |
| 35 | 34, 11 | cab 2713 |
. . 3
class {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} |
| 36 | 2, 5, 35 | cmpt 5223 |
. 2
class (𝑠 ∈ ∪ ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) |
| 37 | 1, 36 | wceq 1540 |
1
wff measures =
(𝑠 ∈ ∪ ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) |