| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measbase | Structured version Visualization version GIF version | ||
| Description: The base set of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| measbase | ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6895 | . 2 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ dom measures) | |
| 2 | vex 3451 | . . . . 5 ⊢ 𝑠 ∈ V | |
| 3 | ovex 7420 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
| 4 | mapex 7917 | . . . . 5 ⊢ ((𝑠 ∈ V ∧ (0[,]+∞) ∈ V) → {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} ∈ V) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . 4 ⊢ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} ∈ V |
| 6 | simp1 1136 | . . . . 5 ⊢ ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))) → 𝑚:𝑠⟶(0[,]+∞)) | |
| 7 | 6 | ss2abi 4030 | . . . 4 ⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ⊆ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} |
| 8 | 5, 7 | ssexi 5277 | . . 3 ⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ∈ V |
| 9 | df-meas 34186 | . . 3 ⊢ measures = (𝑠 ∈ ∪ ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) | |
| 10 | 8, 9 | dmmpti 6662 | . 2 ⊢ dom measures = ∪ ran sigAlgebra |
| 11 | 1, 10 | eleqtrdi 2838 | 1 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 Vcvv 3447 ∅c0 4296 𝒫 cpw 4563 ∪ cuni 4871 Disj wdisj 5074 class class class wbr 5107 dom cdm 5638 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ωcom 7842 ≼ cdom 8916 0cc0 11068 +∞cpnf 11205 [,]cicc 13309 Σ*cesum 34017 sigAlgebracsiga 34098 measurescmeas 34185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-meas 34186 |
| This theorem is referenced by: measfrge0 34193 measvnul 34196 measvun 34199 measxun2 34200 measun 34201 measvuni 34204 measssd 34205 measunl 34206 measiuns 34207 measiun 34208 meascnbl 34209 measinblem 34210 measinb 34211 measinb2 34213 measdivcst 34214 measdivcstALTV 34215 aean 34234 domprobsiga 34402 prob01 34404 probfinmeasb 34419 probfinmeasbALTV 34420 probmeasb 34421 |
| Copyright terms: Public domain | W3C validator |