Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measbase Structured version   Visualization version   GIF version

Theorem measbase 34194
Description: The base set of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measbase (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)

Proof of Theorem measbase
Dummy variables 𝑥 𝑚 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6898 . 2 (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ dom measures)
2 vex 3454 . . . . 5 𝑠 ∈ V
3 ovex 7423 . . . . 5 (0[,]+∞) ∈ V
4 mapex 7920 . . . . 5 ((𝑠 ∈ V ∧ (0[,]+∞) ∈ V) → {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V)
52, 3, 4mp2an 692 . . . 4 {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V
6 simp1 1136 . . . . 5 ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) → 𝑚:𝑠⟶(0[,]+∞))
76ss2abi 4033 . . . 4 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑠⟶(0[,]+∞)}
85, 7ssexi 5280 . . 3 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V
9 df-meas 34193 . . 3 measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
108, 9dmmpti 6665 . 2 dom measures = ran sigAlgebra
111, 10eleqtrdi 2839 1 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  Vcvv 3450  c0 4299  𝒫 cpw 4566   cuni 4874  Disj wdisj 5077   class class class wbr 5110  dom cdm 5641  ran crn 5642  wf 6510  cfv 6514  (class class class)co 7390  ωcom 7845  cdom 8919  0cc0 11075  +∞cpnf 11212  [,]cicc 13316  Σ*cesum 34024  sigAlgebracsiga 34105  measurescmeas 34192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-meas 34193
This theorem is referenced by:  measfrge0  34200  measvnul  34203  measvun  34206  measxun2  34207  measun  34208  measvuni  34211  measssd  34212  measunl  34213  measiuns  34214  measiun  34215  meascnbl  34216  measinblem  34217  measinb  34218  measinb2  34220  measdivcst  34221  measdivcstALTV  34222  aean  34241  domprobsiga  34409  prob01  34411  probfinmeasb  34426  probfinmeasbALTV  34427  probmeasb  34428
  Copyright terms: Public domain W3C validator