Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measbase Structured version   Visualization version   GIF version

Theorem measbase 33133
Description: The base set of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measbase (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)

Proof of Theorem measbase
Dummy variables 𝑥 𝑚 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6925 . 2 (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ dom measures)
2 vex 3479 . . . . 5 𝑠 ∈ V
3 ovex 7437 . . . . 5 (0[,]+∞) ∈ V
4 mapex 8822 . . . . 5 ((𝑠 ∈ V ∧ (0[,]+∞) ∈ V) → {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V)
52, 3, 4mp2an 691 . . . 4 {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V
6 simp1 1137 . . . . 5 ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) → 𝑚:𝑠⟶(0[,]+∞))
76ss2abi 4062 . . . 4 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑠⟶(0[,]+∞)}
85, 7ssexi 5321 . . 3 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V
9 df-meas 33132 . . 3 measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
108, 9dmmpti 6691 . 2 dom measures = ran sigAlgebra
111, 10eleqtrdi 2844 1 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  {cab 2710  wral 3062  Vcvv 3475  c0 4321  𝒫 cpw 4601   cuni 4907  Disj wdisj 5112   class class class wbr 5147  dom cdm 5675  ran crn 5676  wf 6536  cfv 6540  (class class class)co 7404  ωcom 7850  cdom 8933  0cc0 11106  +∞cpnf 11241  [,]cicc 13323  Σ*cesum 32963  sigAlgebracsiga 33044  measurescmeas 33131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7407  df-meas 33132
This theorem is referenced by:  measfrge0  33139  measvnul  33142  measvun  33145  measxun2  33146  measun  33147  measvuni  33150  measssd  33151  measunl  33152  measiuns  33153  measiun  33154  meascnbl  33155  measinblem  33156  measinb  33157  measinb2  33159  measdivcst  33160  measdivcstALTV  33161  aean  33180  domprobsiga  33348  prob01  33350  probfinmeasb  33365  probfinmeasbALTV  33366  probmeasb  33367
  Copyright terms: Public domain W3C validator