![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measbase | Structured version Visualization version GIF version |
Description: The base set of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
Ref | Expression |
---|---|
measbase | ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6957 | . 2 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ dom measures) | |
2 | vex 3492 | . . . . 5 ⊢ 𝑠 ∈ V | |
3 | ovex 7481 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
4 | mapex 7979 | . . . . 5 ⊢ ((𝑠 ∈ V ∧ (0[,]+∞) ∈ V) → {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} ∈ V) | |
5 | 2, 3, 4 | mp2an 691 | . . . 4 ⊢ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} ∈ V |
6 | simp1 1136 | . . . . 5 ⊢ ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))) → 𝑚:𝑠⟶(0[,]+∞)) | |
7 | 6 | ss2abi 4090 | . . . 4 ⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ⊆ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} |
8 | 5, 7 | ssexi 5340 | . . 3 ⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ∈ V |
9 | df-meas 34160 | . . 3 ⊢ measures = (𝑠 ∈ ∪ ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) | |
10 | 8, 9 | dmmpti 6724 | . 2 ⊢ dom measures = ∪ ran sigAlgebra |
11 | 1, 10 | eleqtrdi 2854 | 1 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 Vcvv 3488 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 Disj wdisj 5133 class class class wbr 5166 dom cdm 5700 ran crn 5701 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ≼ cdom 9001 0cc0 11184 +∞cpnf 11321 [,]cicc 13410 Σ*cesum 33991 sigAlgebracsiga 34072 measurescmeas 34159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-meas 34160 |
This theorem is referenced by: measfrge0 34167 measvnul 34170 measvun 34173 measxun2 34174 measun 34175 measvuni 34178 measssd 34179 measunl 34180 measiuns 34181 measiun 34182 meascnbl 34183 measinblem 34184 measinb 34185 measinb2 34187 measdivcst 34188 measdivcstALTV 34189 aean 34208 domprobsiga 34376 prob01 34378 probfinmeasb 34393 probfinmeasbALTV 34394 probmeasb 34395 |
Copyright terms: Public domain | W3C validator |