![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measbase | Structured version Visualization version GIF version |
Description: The base set of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
Ref | Expression |
---|---|
measbase | ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6469 | . 2 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ dom measures) | |
2 | vex 3417 | . . . . 5 ⊢ 𝑠 ∈ V | |
3 | ovex 6942 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
4 | mapex 8133 | . . . . 5 ⊢ ((𝑠 ∈ V ∧ (0[,]+∞) ∈ V) → {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} ∈ V) | |
5 | 2, 3, 4 | mp2an 683 | . . . 4 ⊢ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} ∈ V |
6 | simp1 1170 | . . . . 5 ⊢ ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))) → 𝑚:𝑠⟶(0[,]+∞)) | |
7 | 6 | ss2abi 3901 | . . . 4 ⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ⊆ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} |
8 | 5, 7 | ssexi 5030 | . . 3 ⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ∈ V |
9 | df-meas 30800 | . . 3 ⊢ measures = (𝑠 ∈ ∪ ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) | |
10 | 8, 9 | dmmpti 6260 | . 2 ⊢ dom measures = ∪ ran sigAlgebra |
11 | 1, 10 | syl6eleq 2916 | 1 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 {cab 2811 ∀wral 3117 Vcvv 3414 ∅c0 4146 𝒫 cpw 4380 ∪ cuni 4660 Disj wdisj 4843 class class class wbr 4875 dom cdm 5346 ran crn 5347 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 ωcom 7331 ≼ cdom 8226 0cc0 10259 +∞cpnf 10395 [,]cicc 12473 Σ*cesum 30630 sigAlgebracsiga 30711 measurescmeas 30799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-fv 6135 df-ov 6913 df-meas 30800 |
This theorem is referenced by: measfrge0 30807 measvnul 30810 measvun 30813 measxun2 30814 measun 30815 measvuni 30818 measssd 30819 measunl 30820 measiuns 30821 measiun 30822 meascnbl 30823 measinblem 30824 measinb 30825 measinb2 30827 measdivcstOLD 30828 measdivcst 30829 aean 30848 mbfmbfm 30861 domprobsiga 31015 prob01 31017 probfinmeasbOLD 31032 probfinmeasb 31033 probmeasb 31034 |
Copyright terms: Public domain | W3C validator |