| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measbase | Structured version Visualization version GIF version | ||
| Description: The base set of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| measbase | ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6856 | . 2 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ dom measures) | |
| 2 | vex 3440 | . . . . 5 ⊢ 𝑠 ∈ V | |
| 3 | ovex 7379 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
| 4 | mapex 7871 | . . . . 5 ⊢ ((𝑠 ∈ V ∧ (0[,]+∞) ∈ V) → {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} ∈ V) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . 4 ⊢ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} ∈ V |
| 6 | simp1 1136 | . . . . 5 ⊢ ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))) → 𝑚:𝑠⟶(0[,]+∞)) | |
| 7 | 6 | ss2abi 4018 | . . . 4 ⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ⊆ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} |
| 8 | 5, 7 | ssexi 5260 | . . 3 ⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ∈ V |
| 9 | df-meas 34207 | . . 3 ⊢ measures = (𝑠 ∈ ∪ ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) | |
| 10 | 8, 9 | dmmpti 6625 | . 2 ⊢ dom measures = ∪ ran sigAlgebra |
| 11 | 1, 10 | eleqtrdi 2841 | 1 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 Vcvv 3436 ∅c0 4283 𝒫 cpw 4550 ∪ cuni 4859 Disj wdisj 5058 class class class wbr 5091 dom cdm 5616 ran crn 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ωcom 7796 ≼ cdom 8867 0cc0 11006 +∞cpnf 11143 [,]cicc 13248 Σ*cesum 34038 sigAlgebracsiga 34119 measurescmeas 34206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-meas 34207 |
| This theorem is referenced by: measfrge0 34214 measvnul 34217 measvun 34220 measxun2 34221 measun 34222 measvuni 34225 measssd 34226 measunl 34227 measiuns 34228 measiun 34229 meascnbl 34230 measinblem 34231 measinb 34232 measinb2 34234 measdivcst 34235 measdivcstALTV 34236 aean 34255 domprobsiga 34422 prob01 34424 probfinmeasb 34439 probfinmeasbALTV 34440 probmeasb 34441 |
| Copyright terms: Public domain | W3C validator |