Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measbase Structured version   Visualization version   GIF version

Theorem measbase 32165
Description: The base set of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measbase (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)

Proof of Theorem measbase
Dummy variables 𝑥 𝑚 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6806 . 2 (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ dom measures)
2 vex 3436 . . . . 5 𝑠 ∈ V
3 ovex 7308 . . . . 5 (0[,]+∞) ∈ V
4 mapex 8621 . . . . 5 ((𝑠 ∈ V ∧ (0[,]+∞) ∈ V) → {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V)
52, 3, 4mp2an 689 . . . 4 {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V
6 simp1 1135 . . . . 5 ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) → 𝑚:𝑠⟶(0[,]+∞))
76ss2abi 4000 . . . 4 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑠⟶(0[,]+∞)}
85, 7ssexi 5246 . . 3 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V
9 df-meas 32164 . . 3 measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
108, 9dmmpti 6577 . 2 dom measures = ran sigAlgebra
111, 10eleqtrdi 2849 1 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  Vcvv 3432  c0 4256  𝒫 cpw 4533   cuni 4839  Disj wdisj 5039   class class class wbr 5074  dom cdm 5589  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  ωcom 7712  cdom 8731  0cc0 10871  +∞cpnf 11006  [,]cicc 13082  Σ*cesum 31995  sigAlgebracsiga 32076  measurescmeas 32163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-meas 32164
This theorem is referenced by:  measfrge0  32171  measvnul  32174  measvun  32177  measxun2  32178  measun  32179  measvuni  32182  measssd  32183  measunl  32184  measiuns  32185  measiun  32186  meascnbl  32187  measinblem  32188  measinb  32189  measinb2  32191  measdivcst  32192  measdivcstALTV  32193  aean  32212  mbfmbfm  32225  domprobsiga  32378  prob01  32380  probfinmeasb  32395  probfinmeasbALTV  32396  probmeasb  32397
  Copyright terms: Public domain W3C validator