Step | Hyp | Ref
| Expression |
1 | | df-meas 32164 |
. . . 4
⊢ measures
= (𝑠 ∈ ∪ ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) |
2 | | vex 3436 |
. . . . . 6
⊢ 𝑠 ∈ V |
3 | | ovex 7308 |
. . . . . 6
⊢
(0[,]+∞) ∈ V |
4 | | mapex 8621 |
. . . . . 6
⊢ ((𝑠 ∈ V ∧ (0[,]+∞)
∈ V) → {𝑚 ∣
𝑚:𝑠⟶(0[,]+∞)} ∈
V) |
5 | 2, 3, 4 | mp2an 689 |
. . . . 5
⊢ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} ∈
V |
6 | | simp1 1135 |
. . . . . 6
⊢ ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))) → 𝑚:𝑠⟶(0[,]+∞)) |
7 | 6 | ss2abi 4000 |
. . . . 5
⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ⊆ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} |
8 | 5, 7 | ssexi 5246 |
. . . 4
⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ∈ V |
9 | | feq1 6581 |
. . . . 5
⊢ (𝑚 = 𝑀 → (𝑚:𝑠⟶(0[,]+∞) ↔ 𝑀:𝑠⟶(0[,]+∞))) |
10 | | fveq1 6773 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (𝑚‘∅) = (𝑀‘∅)) |
11 | 10 | eqeq1d 2740 |
. . . . 5
⊢ (𝑚 = 𝑀 → ((𝑚‘∅) = 0 ↔ (𝑀‘∅) = 0)) |
12 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (𝑚‘∪ 𝑥) = (𝑀‘∪ 𝑥)) |
13 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → (𝑚‘𝑦) = (𝑀‘𝑦)) |
14 | 13 | esumeq2sdv 32007 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → Σ*𝑦 ∈ 𝑥(𝑚‘𝑦) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
15 | 12, 14 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → ((𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦) ↔ (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) |
16 | 15 | imbi2d 341 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
17 | 16 | ralbidv 3112 |
. . . . 5
⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)) ↔ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
18 | 9, 11, 17 | 3anbi123d 1435 |
. . . 4
⊢ (𝑚 = 𝑀 → ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))) ↔ (𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) |
19 | 1, 8, 18 | abfmpunirn 30989 |
. . 3
⊢ (𝑀 ∈ ∪ ran measures ↔ (𝑀 ∈ V ∧ ∃𝑠 ∈ ∪ ran
sigAlgebra(𝑀:𝑠⟶(0[,]+∞) ∧
(𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) |
20 | 19 | simprbi 497 |
. 2
⊢ (𝑀 ∈ ∪ ran measures → ∃𝑠 ∈ ∪ ran
sigAlgebra(𝑀:𝑠⟶(0[,]+∞) ∧
(𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
21 | | fdm 6609 |
. . . . . . 7
⊢ (𝑀:𝑠⟶(0[,]+∞) → dom 𝑀 = 𝑠) |
22 | 21 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) → dom 𝑀 = 𝑠) |
23 | 22 | adantl 482 |
. . . . 5
⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ (𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) → dom 𝑀 = 𝑠) |
24 | | simpl 483 |
. . . . 5
⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ (𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) → 𝑠 ∈ ∪ ran
sigAlgebra) |
25 | 23, 24 | eqeltrd 2839 |
. . . 4
⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ (𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
26 | | simp1 1135 |
. . . . . . 7
⊢ ((𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) → 𝑀:𝑠⟶(0[,]+∞)) |
27 | | feq2 6582 |
. . . . . . . 8
⊢ (dom
𝑀 = 𝑠 → (𝑀:dom 𝑀⟶(0[,]+∞) ↔ 𝑀:𝑠⟶(0[,]+∞))) |
28 | 27 | biimpar 478 |
. . . . . . 7
⊢ ((dom
𝑀 = 𝑠 ∧ 𝑀:𝑠⟶(0[,]+∞)) → 𝑀:dom 𝑀⟶(0[,]+∞)) |
29 | 22, 26, 28 | syl2anc 584 |
. . . . . 6
⊢ ((𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) → 𝑀:dom 𝑀⟶(0[,]+∞)) |
30 | | simp2 1136 |
. . . . . 6
⊢ ((𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) → (𝑀‘∅) = 0) |
31 | | simp3 1137 |
. . . . . . 7
⊢ ((𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) → ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) |
32 | | pweq 4549 |
. . . . . . . . 9
⊢ (dom
𝑀 = 𝑠 → 𝒫 dom 𝑀 = 𝒫 𝑠) |
33 | 32 | raleqdv 3348 |
. . . . . . . 8
⊢ (dom
𝑀 = 𝑠 → (∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) ↔ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
34 | 33 | biimpar 478 |
. . . . . . 7
⊢ ((dom
𝑀 = 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) → ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) |
35 | 22, 31, 34 | syl2anc 584 |
. . . . . 6
⊢ ((𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) → ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) |
36 | 29, 30, 35 | 3jca 1127 |
. . . . 5
⊢ ((𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
37 | 36 | adantl 482 |
. . . 4
⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ (𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
38 | 25, 37 | jca 512 |
. . 3
⊢ ((𝑠 ∈ ∪ ran sigAlgebra ∧ (𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) → (dom 𝑀 ∈ ∪ ran
sigAlgebra ∧ (𝑀:dom
𝑀⟶(0[,]+∞)
∧ (𝑀‘∅) = 0
∧ ∀𝑥 ∈
𝒫 dom 𝑀((𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) |
39 | 38 | rexlimiva 3210 |
. 2
⊢
(∃𝑠 ∈
∪ ran sigAlgebra(𝑀:𝑠⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) → (dom 𝑀 ∈ ∪ ran
sigAlgebra ∧ (𝑀:dom
𝑀⟶(0[,]+∞)
∧ (𝑀‘∅) = 0
∧ ∀𝑥 ∈
𝒫 dom 𝑀((𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) |
40 | 20, 39 | syl 17 |
1
⊢ (𝑀 ∈ ∪ ran measures → (dom 𝑀 ∈ ∪ ran
sigAlgebra ∧ (𝑀:dom
𝑀⟶(0[,]+∞)
∧ (𝑀‘∅) = 0
∧ ∀𝑥 ∈
𝒫 dom 𝑀((𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) |