Step | Hyp | Ref
| Expression |
1 | | elex 3448 |
. . 3
⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀 ∈ V) |
2 | 1 | a1i 11 |
. 2
⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) → 𝑀 ∈ V)) |
3 | | simp1 1134 |
. . 3
⊢ ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) → 𝑀:𝑆⟶(0[,]+∞)) |
4 | | ovex 7301 |
. . . 4
⊢
(0[,]+∞) ∈ V |
5 | | fex2 7767 |
. . . . . 6
⊢ ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝑆 ∈ ∪ ran sigAlgebra ∧ (0[,]+∞) ∈ V) →
𝑀 ∈
V) |
6 | 5 | 3expb 1118 |
. . . . 5
⊢ ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑆 ∈ ∪ ran sigAlgebra ∧ (0[,]+∞) ∈ V)) →
𝑀 ∈
V) |
7 | 6 | expcom 413 |
. . . 4
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ (0[,]+∞) ∈ V) →
(𝑀:𝑆⟶(0[,]+∞) → 𝑀 ∈ V)) |
8 | 4, 7 | mpan2 687 |
. . 3
⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑀:𝑆⟶(0[,]+∞) → 𝑀 ∈ V)) |
9 | 3, 8 | syl5 34 |
. 2
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) → 𝑀 ∈ V)) |
10 | | df-meas 32143 |
. . . 4
⊢ measures
= (𝑠 ∈ ∪ ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) |
11 | | vex 3434 |
. . . . . 6
⊢ 𝑠 ∈ V |
12 | | mapex 8595 |
. . . . . 6
⊢ ((𝑠 ∈ V ∧ (0[,]+∞)
∈ V) → {𝑚 ∣
𝑚:𝑠⟶(0[,]+∞)} ∈
V) |
13 | 11, 4, 12 | mp2an 688 |
. . . . 5
⊢ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} ∈
V |
14 | | simp1 1134 |
. . . . . 6
⊢ ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))) → 𝑚:𝑠⟶(0[,]+∞)) |
15 | 14 | ss2abi 4004 |
. . . . 5
⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ⊆ {𝑚 ∣ 𝑚:𝑠⟶(0[,]+∞)} |
16 | 13, 15 | ssexi 5249 |
. . . 4
⊢ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ∈ V |
17 | | simpr 484 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) |
18 | | simpl 482 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → 𝑠 = 𝑆) |
19 | 17, 18 | feq12d 6584 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (𝑚:𝑠⟶(0[,]+∞) ↔ 𝑀:𝑆⟶(0[,]+∞))) |
20 | | fveq1 6767 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (𝑚‘∅) = (𝑀‘∅)) |
21 | 20 | eqeq1d 2741 |
. . . . . 6
⊢ (𝑚 = 𝑀 → ((𝑚‘∅) = 0 ↔ (𝑀‘∅) = 0)) |
22 | 21 | adantl 481 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → ((𝑚‘∅) = 0 ↔ (𝑀‘∅) = 0)) |
23 | 18 | pweqd 4557 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → 𝒫 𝑠 = 𝒫 𝑆) |
24 | | fveq1 6767 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → (𝑚‘∪ 𝑥) = (𝑀‘∪ 𝑥)) |
25 | | fveq1 6767 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (𝑚‘𝑦) = (𝑀‘𝑦)) |
26 | 25 | esumeq2sdv 31986 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → Σ*𝑦 ∈ 𝑥(𝑚‘𝑦) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
27 | 24, 26 | eqeq12d 2755 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → ((𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦) ↔ (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))) |
28 | 27 | imbi2d 340 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
29 | 28 | adantl 481 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
30 | 23, 29 | raleqbidv 3334 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
31 | 19, 22, 30 | 3anbi123d 1434 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) |
32 | 10, 16, 31 | abfmpel 30971 |
. . 3
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑀 ∈ V) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) |
33 | 32 | ex 412 |
. 2
⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑀 ∈ V → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))))) |
34 | 2, 9, 33 | pm5.21ndd 380 |
1
⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) |