Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismeas Structured version   Visualization version   GIF version

Theorem ismeas 31458
Description: The property of being a measure. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 19-Oct-2016.)
Assertion
Ref Expression
ismeas (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑆
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem ismeas
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3512 . . 3 (𝑀 ∈ (measures‘𝑆) → 𝑀 ∈ V)
21a1i 11 . 2 (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) → 𝑀 ∈ V))
3 simp1 1132 . . 3 ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))) → 𝑀:𝑆⟶(0[,]+∞))
4 ovex 7189 . . . 4 (0[,]+∞) ∈ V
5 fex2 7638 . . . . . 6 ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V) → 𝑀 ∈ V)
653expb 1116 . . . . 5 ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V)) → 𝑀 ∈ V)
76expcom 416 . . . 4 ((𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V) → (𝑀:𝑆⟶(0[,]+∞) → 𝑀 ∈ V))
84, 7mpan2 689 . . 3 (𝑆 ran sigAlgebra → (𝑀:𝑆⟶(0[,]+∞) → 𝑀 ∈ V))
93, 8syl5 34 . 2 (𝑆 ran sigAlgebra → ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))) → 𝑀 ∈ V))
10 df-meas 31455 . . . 4 measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
11 vex 3497 . . . . . 6 𝑠 ∈ V
12 mapex 8412 . . . . . 6 ((𝑠 ∈ V ∧ (0[,]+∞) ∈ V) → {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V)
1311, 4, 12mp2an 690 . . . . 5 {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V
14 simp1 1132 . . . . . 6 ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) → 𝑚:𝑠⟶(0[,]+∞))
1514ss2abi 4043 . . . . 5 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑠⟶(0[,]+∞)}
1613, 15ssexi 5226 . . . 4 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V
17 simpr 487 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑚 = 𝑀)
18 simpl 485 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑠 = 𝑆)
1917, 18feq12d 6502 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (𝑚:𝑠⟶(0[,]+∞) ↔ 𝑀:𝑆⟶(0[,]+∞)))
20 fveq1 6669 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘∅) = (𝑀‘∅))
2120eqeq1d 2823 . . . . . 6 (𝑚 = 𝑀 → ((𝑚‘∅) = 0 ↔ (𝑀‘∅) = 0))
2221adantl 484 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑚‘∅) = 0 ↔ (𝑀‘∅) = 0))
2318pweqd 4558 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝒫 𝑠 = 𝒫 𝑆)
24 fveq1 6669 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑚 𝑥) = (𝑀 𝑥))
25 fveq1 6669 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚𝑦) = (𝑀𝑦))
2625esumeq2sdv 31298 . . . . . . . . 9 (𝑚 = 𝑀 → Σ*𝑦𝑥(𝑚𝑦) = Σ*𝑦𝑥(𝑀𝑦))
2724, 26eqeq12d 2837 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦) ↔ (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))
2827imbi2d 343 . . . . . . 7 (𝑚 = 𝑀 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
2928adantl 484 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
3023, 29raleqbidv 3401 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
3119, 22, 303anbi123d 1432 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
3210, 16, 31abfmpel 30400 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑀 ∈ V) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
3332ex 415 . 2 (𝑆 ran sigAlgebra → (𝑀 ∈ V → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))))
342, 9, 33pm5.21ndd 383 1 (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wral 3138  Vcvv 3494  c0 4291  𝒫 cpw 4539   cuni 4838  Disj wdisj 5031   class class class wbr 5066  ran crn 5556  wf 6351  cfv 6355  (class class class)co 7156  ωcom 7580  cdom 8507  0cc0 10537  +∞cpnf 10672  [,]cicc 12742  Σ*cesum 31286  sigAlgebracsiga 31367  measurescmeas 31454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-esum 31287  df-meas 31455
This theorem is referenced by:  measbasedom  31461  measfrge0  31462  measvnul  31465  measvun  31468  measinb  31480  measres  31481  measdivcst  31483  measdivcstALTV  31484  cntmeas  31485  volmeas  31490  ddemeas  31495  omsmeas  31581  dstrvprob  31729
  Copyright terms: Public domain W3C validator