Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismeas Structured version   Visualization version   GIF version

Theorem ismeas 32146
Description: The property of being a measure. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 19-Oct-2016.)
Assertion
Ref Expression
ismeas (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑆
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem ismeas
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3448 . . 3 (𝑀 ∈ (measures‘𝑆) → 𝑀 ∈ V)
21a1i 11 . 2 (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) → 𝑀 ∈ V))
3 simp1 1134 . . 3 ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))) → 𝑀:𝑆⟶(0[,]+∞))
4 ovex 7301 . . . 4 (0[,]+∞) ∈ V
5 fex2 7767 . . . . . 6 ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V) → 𝑀 ∈ V)
653expb 1118 . . . . 5 ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V)) → 𝑀 ∈ V)
76expcom 413 . . . 4 ((𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V) → (𝑀:𝑆⟶(0[,]+∞) → 𝑀 ∈ V))
84, 7mpan2 687 . . 3 (𝑆 ran sigAlgebra → (𝑀:𝑆⟶(0[,]+∞) → 𝑀 ∈ V))
93, 8syl5 34 . 2 (𝑆 ran sigAlgebra → ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))) → 𝑀 ∈ V))
10 df-meas 32143 . . . 4 measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
11 vex 3434 . . . . . 6 𝑠 ∈ V
12 mapex 8595 . . . . . 6 ((𝑠 ∈ V ∧ (0[,]+∞) ∈ V) → {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V)
1311, 4, 12mp2an 688 . . . . 5 {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V
14 simp1 1134 . . . . . 6 ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) → 𝑚:𝑠⟶(0[,]+∞))
1514ss2abi 4004 . . . . 5 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑠⟶(0[,]+∞)}
1613, 15ssexi 5249 . . . 4 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V
17 simpr 484 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑚 = 𝑀)
18 simpl 482 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑠 = 𝑆)
1917, 18feq12d 6584 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (𝑚:𝑠⟶(0[,]+∞) ↔ 𝑀:𝑆⟶(0[,]+∞)))
20 fveq1 6767 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘∅) = (𝑀‘∅))
2120eqeq1d 2741 . . . . . 6 (𝑚 = 𝑀 → ((𝑚‘∅) = 0 ↔ (𝑀‘∅) = 0))
2221adantl 481 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑚‘∅) = 0 ↔ (𝑀‘∅) = 0))
2318pweqd 4557 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝒫 𝑠 = 𝒫 𝑆)
24 fveq1 6767 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑚 𝑥) = (𝑀 𝑥))
25 fveq1 6767 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚𝑦) = (𝑀𝑦))
2625esumeq2sdv 31986 . . . . . . . . 9 (𝑚 = 𝑀 → Σ*𝑦𝑥(𝑚𝑦) = Σ*𝑦𝑥(𝑀𝑦))
2724, 26eqeq12d 2755 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦) ↔ (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))
2827imbi2d 340 . . . . . . 7 (𝑚 = 𝑀 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
2928adantl 481 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
3023, 29raleqbidv 3334 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
3119, 22, 303anbi123d 1434 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
3210, 16, 31abfmpel 30971 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑀 ∈ V) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
3332ex 412 . 2 (𝑆 ran sigAlgebra → (𝑀 ∈ V → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))))
342, 9, 33pm5.21ndd 380 1 (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  {cab 2716  wral 3065  Vcvv 3430  c0 4261  𝒫 cpw 4538   cuni 4844  Disj wdisj 5043   class class class wbr 5078  ran crn 5589  wf 6426  cfv 6430  (class class class)co 7268  ωcom 7700  cdom 8705  0cc0 10855  +∞cpnf 10990  [,]cicc 13064  Σ*cesum 31974  sigAlgebracsiga 32055  measurescmeas 32142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-esum 31975  df-meas 32143
This theorem is referenced by:  measbasedom  32149  measfrge0  32150  measvnul  32153  measvun  32156  measinb  32168  measres  32169  measdivcst  32171  measdivcstALTV  32172  cntmeas  32173  volmeas  32178  ddemeas  32183  omsmeas  32269  dstrvprob  32417
  Copyright terms: Public domain W3C validator