Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismeas Structured version   Visualization version   GIF version

Theorem ismeas 30601
Description: The property of being a measure. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 19-Oct-2016.)
Assertion
Ref Expression
ismeas (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑆
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem ismeas
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3364 . . 3 (𝑀 ∈ (measures‘𝑆) → 𝑀 ∈ V)
21a1i 11 . 2 (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) → 𝑀 ∈ V))
3 simp1 1130 . . 3 ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))) → 𝑀:𝑆⟶(0[,]+∞))
4 ovex 6826 . . . 4 (0[,]+∞) ∈ V
5 fex2 7271 . . . . . 6 ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V) → 𝑀 ∈ V)
653expb 1113 . . . . 5 ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V)) → 𝑀 ∈ V)
76expcom 398 . . . 4 ((𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V) → (𝑀:𝑆⟶(0[,]+∞) → 𝑀 ∈ V))
84, 7mpan2 671 . . 3 (𝑆 ran sigAlgebra → (𝑀:𝑆⟶(0[,]+∞) → 𝑀 ∈ V))
93, 8syl5 34 . 2 (𝑆 ran sigAlgebra → ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))) → 𝑀 ∈ V))
10 df-meas 30598 . . . 4 measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
11 vex 3354 . . . . . 6 𝑠 ∈ V
12 mapex 8018 . . . . . 6 ((𝑠 ∈ V ∧ (0[,]+∞) ∈ V) → {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V)
1311, 4, 12mp2an 672 . . . . 5 {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V
14 simp1 1130 . . . . . 6 ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) → 𝑚:𝑠⟶(0[,]+∞))
1514ss2abi 3823 . . . . 5 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑠⟶(0[,]+∞)}
1613, 15ssexi 4938 . . . 4 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V
17 simpr 471 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑚 = 𝑀)
18 simpl 468 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑠 = 𝑆)
1917, 18feq12d 6172 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (𝑚:𝑠⟶(0[,]+∞) ↔ 𝑀:𝑆⟶(0[,]+∞)))
20 fveq1 6332 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘∅) = (𝑀‘∅))
2120eqeq1d 2773 . . . . . 6 (𝑚 = 𝑀 → ((𝑚‘∅) = 0 ↔ (𝑀‘∅) = 0))
2221adantl 467 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑚‘∅) = 0 ↔ (𝑀‘∅) = 0))
2318pweqd 4303 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝒫 𝑠 = 𝒫 𝑆)
24 fveq1 6332 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑚 𝑥) = (𝑀 𝑥))
25 fveq1 6332 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚𝑦) = (𝑀𝑦))
2625esumeq2sdv 30440 . . . . . . . . 9 (𝑚 = 𝑀 → Σ*𝑦𝑥(𝑚𝑦) = Σ*𝑦𝑥(𝑀𝑦))
2724, 26eqeq12d 2786 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦) ↔ (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))
2827imbi2d 329 . . . . . . 7 (𝑚 = 𝑀 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
2928adantl 467 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
3023, 29raleqbidv 3301 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
3119, 22, 303anbi123d 1547 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
3210, 16, 31abfmpel 29794 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑀 ∈ V) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
3332ex 397 . 2 (𝑆 ran sigAlgebra → (𝑀 ∈ V → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))))
342, 9, 33pm5.21ndd 368 1 (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  {cab 2757  wral 3061  Vcvv 3351  c0 4063  𝒫 cpw 4298   cuni 4575  Disj wdisj 4755   class class class wbr 4787  ran crn 5251  wf 6026  cfv 6030  (class class class)co 6795  ωcom 7215  cdom 8110  0cc0 10141  +∞cpnf 10276  [,]cicc 12382  Σ*cesum 30428  sigAlgebracsiga 30509  measurescmeas 30597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fv 6038  df-ov 6798  df-esum 30429  df-meas 30598
This theorem is referenced by:  measbasedom  30604  measfrge0  30605  measvnul  30608  measvun  30611  measinb  30623  measres  30624  measdivcstOLD  30626  measdivcst  30627  cntmeas  30628  volmeas  30633  ddemeas  30638  omsmeas  30724  dstrvprob  30872
  Copyright terms: Public domain W3C validator