Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measval Structured version   Visualization version   GIF version

Theorem measval 33191
Description: The value of the measures function applied on a sigma-algebra. (Contributed by Thierry Arnoux, 17-Oct-2016.)
Assertion
Ref Expression
measval (𝑆 ∈ βˆͺ ran sigAlgebra β†’ (measuresβ€˜π‘†) = {π‘š ∣ (π‘š:π‘†βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))})
Distinct variable groups:   π‘₯,π‘š,𝑦   𝑆,π‘š,π‘₯
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem measval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((π‘š:π‘†βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦))) β†’ π‘š:π‘†βŸΆ(0[,]+∞))
21ss2abi 4063 . . 3 {π‘š ∣ (π‘š:π‘†βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))} βŠ† {π‘š ∣ π‘š:π‘†βŸΆ(0[,]+∞)}
3 ovex 7441 . . . 4 (0[,]+∞) ∈ V
4 mapex 8825 . . . 4 ((𝑆 ∈ βˆͺ ran sigAlgebra ∧ (0[,]+∞) ∈ V) β†’ {π‘š ∣ π‘š:π‘†βŸΆ(0[,]+∞)} ∈ V)
53, 4mpan2 689 . . 3 (𝑆 ∈ βˆͺ ran sigAlgebra β†’ {π‘š ∣ π‘š:π‘†βŸΆ(0[,]+∞)} ∈ V)
6 ssexg 5323 . . 3 (({π‘š ∣ (π‘š:π‘†βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))} βŠ† {π‘š ∣ π‘š:π‘†βŸΆ(0[,]+∞)} ∧ {π‘š ∣ π‘š:π‘†βŸΆ(0[,]+∞)} ∈ V) β†’ {π‘š ∣ (π‘š:π‘†βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))} ∈ V)
72, 5, 6sylancr 587 . 2 (𝑆 ∈ βˆͺ ran sigAlgebra β†’ {π‘š ∣ (π‘š:π‘†βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))} ∈ V)
8 feq2 6699 . . . . 5 (𝑠 = 𝑆 β†’ (π‘š:π‘ βŸΆ(0[,]+∞) ↔ π‘š:π‘†βŸΆ(0[,]+∞)))
9 pweq 4616 . . . . . 6 (𝑠 = 𝑆 β†’ 𝒫 𝑠 = 𝒫 𝑆)
109raleqdv 3325 . . . . 5 (𝑠 = 𝑆 β†’ (βˆ€π‘₯ ∈ 𝒫 𝑠((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)) ↔ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦))))
118, 103anbi13d 1438 . . . 4 (𝑠 = 𝑆 β†’ ((π‘š:π‘ βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑠((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦))) ↔ (π‘š:π‘†βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))))
1211abbidv 2801 . . 3 (𝑠 = 𝑆 β†’ {π‘š ∣ (π‘š:π‘ βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑠((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))} = {π‘š ∣ (π‘š:π‘†βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))})
13 df-meas 33189 . . 3 measures = (𝑠 ∈ βˆͺ ran sigAlgebra ↦ {π‘š ∣ (π‘š:π‘ βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑠((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))})
1412, 13fvmptg 6996 . 2 ((𝑆 ∈ βˆͺ ran sigAlgebra ∧ {π‘š ∣ (π‘š:π‘†βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))} ∈ V) β†’ (measuresβ€˜π‘†) = {π‘š ∣ (π‘š:π‘†βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))})
157, 14mpdan 685 1 (𝑆 ∈ βˆͺ ran sigAlgebra β†’ (measuresβ€˜π‘†) = {π‘š ∣ (π‘š:π‘†βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑆((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  Vcvv 3474   βŠ† wss 3948  βˆ…c0 4322  π’« cpw 4602  βˆͺ cuni 4908  Disj wdisj 5113   class class class wbr 5148  ran crn 5677  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  Ο‰com 7854   β‰Ό cdom 8936  0cc0 11109  +∞cpnf 11244  [,]cicc 13326  Ξ£*cesum 33020  sigAlgebracsiga 33101  measurescmeas 33188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-meas 33189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator