Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measval Structured version   Visualization version   GIF version

Theorem measval 34194
Description: The value of the measures function applied on a sigma-algebra. (Contributed by Thierry Arnoux, 17-Oct-2016.)
Assertion
Ref Expression
measval (𝑆 ran sigAlgebra → (measures‘𝑆) = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
Distinct variable groups:   𝑥,𝑚,𝑦   𝑆,𝑚,𝑥
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem measval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) → 𝑚:𝑆⟶(0[,]+∞))
21ss2abi 4032 . . 3 {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑆⟶(0[,]+∞)}
3 ovex 7422 . . . 4 (0[,]+∞) ∈ V
4 mapex 7919 . . . 4 ((𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V) → {𝑚𝑚:𝑆⟶(0[,]+∞)} ∈ V)
53, 4mpan2 691 . . 3 (𝑆 ran sigAlgebra → {𝑚𝑚:𝑆⟶(0[,]+∞)} ∈ V)
6 ssexg 5280 . . 3 (({𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑆⟶(0[,]+∞)} ∧ {𝑚𝑚:𝑆⟶(0[,]+∞)} ∈ V) → {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V)
72, 5, 6sylancr 587 . 2 (𝑆 ran sigAlgebra → {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V)
8 feq2 6669 . . . . 5 (𝑠 = 𝑆 → (𝑚:𝑠⟶(0[,]+∞) ↔ 𝑚:𝑆⟶(0[,]+∞)))
9 pweq 4579 . . . . . 6 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
109raleqdv 3301 . . . . 5 (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))))
118, 103anbi13d 1440 . . . 4 (𝑠 = 𝑆 → ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) ↔ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))))
1211abbidv 2796 . . 3 (𝑠 = 𝑆 → {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
13 df-meas 34192 . . 3 measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
1412, 13fvmptg 6968 . 2 ((𝑆 ran sigAlgebra ∧ {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V) → (measures‘𝑆) = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
157, 14mpdan 687 1 (𝑆 ran sigAlgebra → (measures‘𝑆) = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  Vcvv 3450  wss 3916  c0 4298  𝒫 cpw 4565   cuni 4873  Disj wdisj 5076   class class class wbr 5109  ran crn 5641  wf 6509  cfv 6513  (class class class)co 7389  ωcom 7844  cdom 8918  0cc0 11074  +∞cpnf 11211  [,]cicc 13315  Σ*cesum 34023  sigAlgebracsiga 34104  measurescmeas 34191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-ov 7392  df-meas 34192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator