Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measval Structured version   Visualization version   GIF version

Theorem measval 34167
Description: The value of the measures function applied on a sigma-algebra. (Contributed by Thierry Arnoux, 17-Oct-2016.)
Assertion
Ref Expression
measval (𝑆 ran sigAlgebra → (measures‘𝑆) = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
Distinct variable groups:   𝑥,𝑚,𝑦   𝑆,𝑚,𝑥
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem measval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) → 𝑚:𝑆⟶(0[,]+∞))
21ss2abi 4021 . . 3 {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑆⟶(0[,]+∞)}
3 ovex 7386 . . . 4 (0[,]+∞) ∈ V
4 mapex 7881 . . . 4 ((𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V) → {𝑚𝑚:𝑆⟶(0[,]+∞)} ∈ V)
53, 4mpan2 691 . . 3 (𝑆 ran sigAlgebra → {𝑚𝑚:𝑆⟶(0[,]+∞)} ∈ V)
6 ssexg 5265 . . 3 (({𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑆⟶(0[,]+∞)} ∧ {𝑚𝑚:𝑆⟶(0[,]+∞)} ∈ V) → {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V)
72, 5, 6sylancr 587 . 2 (𝑆 ran sigAlgebra → {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V)
8 feq2 6635 . . . . 5 (𝑠 = 𝑆 → (𝑚:𝑠⟶(0[,]+∞) ↔ 𝑚:𝑆⟶(0[,]+∞)))
9 pweq 4567 . . . . . 6 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
109raleqdv 3290 . . . . 5 (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))))
118, 103anbi13d 1440 . . . 4 (𝑠 = 𝑆 → ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) ↔ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))))
1211abbidv 2795 . . 3 (𝑠 = 𝑆 → {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
13 df-meas 34165 . . 3 measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
1412, 13fvmptg 6932 . 2 ((𝑆 ran sigAlgebra ∧ {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V) → (measures‘𝑆) = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
157, 14mpdan 687 1 (𝑆 ran sigAlgebra → (measures‘𝑆) = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3438  wss 3905  c0 4286  𝒫 cpw 4553   cuni 4861  Disj wdisj 5062   class class class wbr 5095  ran crn 5624  wf 6482  cfv 6486  (class class class)co 7353  ωcom 7806  cdom 8877  0cc0 11028  +∞cpnf 11165  [,]cicc 13269  Σ*cesum 33996  sigAlgebracsiga 34077  measurescmeas 34164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-meas 34165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator