Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measval Structured version   Visualization version   GIF version

Theorem measval 32405
Description: The value of the measures function applied on a sigma-algebra. (Contributed by Thierry Arnoux, 17-Oct-2016.)
Assertion
Ref Expression
measval (𝑆 ran sigAlgebra → (measures‘𝑆) = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
Distinct variable groups:   𝑥,𝑚,𝑦   𝑆,𝑚,𝑥
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem measval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . 4 ((𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) → 𝑚:𝑆⟶(0[,]+∞))
21ss2abi 4010 . . 3 {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑆⟶(0[,]+∞)}
3 ovex 7362 . . . 4 (0[,]+∞) ∈ V
4 mapex 8684 . . . 4 ((𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V) → {𝑚𝑚:𝑆⟶(0[,]+∞)} ∈ V)
53, 4mpan2 688 . . 3 (𝑆 ran sigAlgebra → {𝑚𝑚:𝑆⟶(0[,]+∞)} ∈ V)
6 ssexg 5264 . . 3 (({𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑆⟶(0[,]+∞)} ∧ {𝑚𝑚:𝑆⟶(0[,]+∞)} ∈ V) → {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V)
72, 5, 6sylancr 587 . 2 (𝑆 ran sigAlgebra → {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V)
8 feq2 6627 . . . . 5 (𝑠 = 𝑆 → (𝑚:𝑠⟶(0[,]+∞) ↔ 𝑚:𝑆⟶(0[,]+∞)))
9 pweq 4560 . . . . . 6 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
109raleqdv 3309 . . . . 5 (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))))
118, 103anbi13d 1437 . . . 4 (𝑠 = 𝑆 → ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) ↔ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))))
1211abbidv 2805 . . 3 (𝑠 = 𝑆 → {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
13 df-meas 32403 . . 3 measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
1412, 13fvmptg 6923 . 2 ((𝑆 ran sigAlgebra ∧ {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V) → (measures‘𝑆) = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
157, 14mpdan 684 1 (𝑆 ran sigAlgebra → (measures‘𝑆) = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  {cab 2713  wral 3061  Vcvv 3441  wss 3897  c0 4268  𝒫 cpw 4546   cuni 4851  Disj wdisj 5054   class class class wbr 5089  ran crn 5615  wf 6469  cfv 6473  (class class class)co 7329  ωcom 7772  cdom 8794  0cc0 10964  +∞cpnf 11099  [,]cicc 13175  Σ*cesum 32234  sigAlgebracsiga 32315  measurescmeas 32402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-fv 6481  df-ov 7332  df-meas 32403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator