Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . 4
⊢ ((𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))) → 𝑚:𝑆⟶(0[,]+∞)) |
2 | 1 | ss2abi 3996 |
. . 3
⊢ {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ⊆ {𝑚 ∣ 𝑚:𝑆⟶(0[,]+∞)} |
3 | | ovex 7288 |
. . . 4
⊢
(0[,]+∞) ∈ V |
4 | | mapex 8579 |
. . . 4
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ (0[,]+∞) ∈ V) →
{𝑚 ∣ 𝑚:𝑆⟶(0[,]+∞)} ∈
V) |
5 | 3, 4 | mpan2 687 |
. . 3
⊢ (𝑆 ∈ ∪ ran sigAlgebra → {𝑚 ∣ 𝑚:𝑆⟶(0[,]+∞)} ∈
V) |
6 | | ssexg 5242 |
. . 3
⊢ (({𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ⊆ {𝑚 ∣ 𝑚:𝑆⟶(0[,]+∞)} ∧ {𝑚 ∣ 𝑚:𝑆⟶(0[,]+∞)} ∈ V) →
{𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ∈ V) |
7 | 2, 5, 6 | sylancr 586 |
. 2
⊢ (𝑆 ∈ ∪ ran sigAlgebra → {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ∈ V) |
8 | | feq2 6566 |
. . . . 5
⊢ (𝑠 = 𝑆 → (𝑚:𝑠⟶(0[,]+∞) ↔ 𝑚:𝑆⟶(0[,]+∞))) |
9 | | pweq 4546 |
. . . . . 6
⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) |
10 | 9 | raleqdv 3339 |
. . . . 5
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))) |
11 | 8, 10 | 3anbi13d 1436 |
. . . 4
⊢ (𝑠 = 𝑆 → ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))) ↔ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦))))) |
12 | 11 | abbidv 2808 |
. . 3
⊢ (𝑠 = 𝑆 → {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) |
13 | | df-meas 32064 |
. . 3
⊢ measures
= (𝑠 ∈ ∪ ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) |
14 | 12, 13 | fvmptg 6855 |
. 2
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))} ∈ V) → (measures‘𝑆) = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) |
15 | 7, 14 | mpdan 683 |
1
⊢ (𝑆 ∈ ∪ ran sigAlgebra → (measures‘𝑆) = {𝑚 ∣ (𝑚:𝑆⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) |