Detailed syntax breakdown of Definition df-met
| Step | Hyp | Ref
| Expression |
| 1 | | cmet 21350 |
. 2
class
Met |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 5 | 4 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 6 | | vz |
. . . . . . . . . . 11
setvar 𝑧 |
| 7 | 6 | cv 1539 |
. . . . . . . . . 10
class 𝑧 |
| 8 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
| 9 | 8 | cv 1539 |
. . . . . . . . . 10
class 𝑑 |
| 10 | 5, 7, 9 | co 7431 |
. . . . . . . . 9
class (𝑦𝑑𝑧) |
| 11 | | cc0 11155 |
. . . . . . . . 9
class
0 |
| 12 | 10, 11 | wceq 1540 |
. . . . . . . 8
wff (𝑦𝑑𝑧) = 0 |
| 13 | 4, 6 | weq 1962 |
. . . . . . . 8
wff 𝑦 = 𝑧 |
| 14 | 12, 13 | wb 206 |
. . . . . . 7
wff ((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) |
| 15 | | vw |
. . . . . . . . . . . 12
setvar 𝑤 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . 11
class 𝑤 |
| 17 | 16, 5, 9 | co 7431 |
. . . . . . . . . 10
class (𝑤𝑑𝑦) |
| 18 | 16, 7, 9 | co 7431 |
. . . . . . . . . 10
class (𝑤𝑑𝑧) |
| 19 | | caddc 11158 |
. . . . . . . . . 10
class
+ |
| 20 | 17, 18, 19 | co 7431 |
. . . . . . . . 9
class ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)) |
| 21 | | cle 11296 |
. . . . . . . . 9
class
≤ |
| 22 | 10, 20, 21 | wbr 5143 |
. . . . . . . 8
wff (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)) |
| 23 | 2 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 24 | 22, 15, 23 | wral 3061 |
. . . . . . 7
wff
∀𝑤 ∈
𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)) |
| 25 | 14, 24 | wa 395 |
. . . . . 6
wff (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧))) |
| 26 | 25, 6, 23 | wral 3061 |
. . . . 5
wff
∀𝑧 ∈
𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧))) |
| 27 | 26, 4, 23 | wral 3061 |
. . . 4
wff
∀𝑦 ∈
𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧))) |
| 28 | | cr 11154 |
. . . . 5
class
ℝ |
| 29 | 23, 23 | cxp 5683 |
. . . . 5
class (𝑥 × 𝑥) |
| 30 | | cmap 8866 |
. . . . 5
class
↑m |
| 31 | 28, 29, 30 | co 7431 |
. . . 4
class (ℝ
↑m (𝑥
× 𝑥)) |
| 32 | 27, 8, 31 | crab 3436 |
. . 3
class {𝑑 ∈ (ℝ
↑m (𝑥
× 𝑥)) ∣
∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))} |
| 33 | 2, 3, 32 | cmpt 5225 |
. 2
class (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ
↑m (𝑥
× 𝑥)) ∣
∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) |
| 34 | 1, 33 | wceq 1540 |
1
wff Met =
(𝑥 ∈ V ↦ {𝑑 ∈ (ℝ
↑m (𝑥
× 𝑥)) ∣
∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) |