MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismet Structured version   Visualization version   GIF version

Theorem ismet 23384
Description: Express the predicate "𝐷 is a metric." (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
ismet (𝑋𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem ismet
Dummy variables 𝑑 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3440 . . . . 5 (𝑋𝐴𝑋 ∈ V)
2 xpeq12 5605 . . . . . . . . 9 ((𝑡 = 𝑋𝑡 = 𝑋) → (𝑡 × 𝑡) = (𝑋 × 𝑋))
32anidms 566 . . . . . . . 8 (𝑡 = 𝑋 → (𝑡 × 𝑡) = (𝑋 × 𝑋))
43oveq2d 7271 . . . . . . 7 (𝑡 = 𝑋 → (ℝ ↑m (𝑡 × 𝑡)) = (ℝ ↑m (𝑋 × 𝑋)))
5 raleq 3333 . . . . . . . . . 10 (𝑡 = 𝑋 → (∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))))
65anbi2d 628 . . . . . . . . 9 (𝑡 = 𝑋 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))))
76raleqbi1dv 3331 . . . . . . . 8 (𝑡 = 𝑋 → (∀𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))))
87raleqbi1dv 3331 . . . . . . 7 (𝑡 = 𝑋 → (∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))))
94, 8rabeqbidv 3410 . . . . . 6 (𝑡 = 𝑋 → {𝑑 ∈ (ℝ ↑m (𝑡 × 𝑡)) ∣ ∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
10 df-met 20504 . . . . . 6 Met = (𝑡 ∈ V ↦ {𝑑 ∈ (ℝ ↑m (𝑡 × 𝑡)) ∣ ∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
11 ovex 7288 . . . . . . 7 (ℝ ↑m (𝑋 × 𝑋)) ∈ V
1211rabex 5251 . . . . . 6 {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ∈ V
139, 10, 12fvmpt 6857 . . . . 5 (𝑋 ∈ V → (Met‘𝑋) = {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
141, 13syl 17 . . . 4 (𝑋𝐴 → (Met‘𝑋) = {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
1514eleq2d 2824 . . 3 (𝑋𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}))
16 oveq 7261 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
1716eqeq1d 2740 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥𝑑𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
1817bibi1d 343 . . . . . 6 (𝑑 = 𝐷 → (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)))
19 oveq 7261 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥))
20 oveq 7261 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦))
2119, 20oveq12d 7273 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
2216, 21breq12d 5083 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
2322ralbidv 3120 . . . . . 6 (𝑑 = 𝐷 → (∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
2418, 23anbi12d 630 . . . . 5 (𝑑 = 𝐷 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
25242ralbidv 3122 . . . 4 (𝑑 = 𝐷 → (∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
2625elrab 3617 . . 3 (𝐷 ∈ {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
2715, 26bitrdi 286 . 2 (𝑋𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
28 reex 10893 . . . 4 ℝ ∈ V
29 sqxpexg 7583 . . . 4 (𝑋𝐴 → (𝑋 × 𝑋) ∈ V)
30 elmapg 8586 . . . 4 ((ℝ ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (𝐷 ∈ (ℝ ↑m (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ))
3128, 29, 30sylancr 586 . . 3 (𝑋𝐴 → (𝐷 ∈ (ℝ ↑m (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ))
3231anbi1d 629 . 2 (𝑋𝐴 → ((𝐷 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
3327, 32bitrd 278 1 (𝑋𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422   class class class wbr 5070   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cr 10801  0cc0 10802   + caddc 10805  cle 10941  Metcmet 20496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-met 20504
This theorem is referenced by:  ismeti  23386  metflem  23389  ismet2  23394  dscmet  23634  nrmmetd  23636  rrxmet  24477  metf1o  35840  rrnmet  35914
  Copyright terms: Public domain W3C validator