MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismet Structured version   Visualization version   GIF version

Theorem ismet 24239
Description: Express the predicate "𝐷 is a metric." (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
ismet (𝑋𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem ismet
Dummy variables 𝑑 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3458 . . . . 5 (𝑋𝐴𝑋 ∈ V)
2 xpeq12 5644 . . . . . . . . 9 ((𝑡 = 𝑋𝑡 = 𝑋) → (𝑡 × 𝑡) = (𝑋 × 𝑋))
32anidms 566 . . . . . . . 8 (𝑡 = 𝑋 → (𝑡 × 𝑡) = (𝑋 × 𝑋))
43oveq2d 7368 . . . . . . 7 (𝑡 = 𝑋 → (ℝ ↑m (𝑡 × 𝑡)) = (ℝ ↑m (𝑋 × 𝑋)))
5 raleq 3290 . . . . . . . . . 10 (𝑡 = 𝑋 → (∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))))
65anbi2d 630 . . . . . . . . 9 (𝑡 = 𝑋 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))))
76raleqbi1dv 3305 . . . . . . . 8 (𝑡 = 𝑋 → (∀𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))))
87raleqbi1dv 3305 . . . . . . 7 (𝑡 = 𝑋 → (∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))))
94, 8rabeqbidv 3414 . . . . . 6 (𝑡 = 𝑋 → {𝑑 ∈ (ℝ ↑m (𝑡 × 𝑡)) ∣ ∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} = {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
10 df-met 21287 . . . . . 6 Met = (𝑡 ∈ V ↦ {𝑑 ∈ (ℝ ↑m (𝑡 × 𝑡)) ∣ ∀𝑥𝑡𝑦𝑡 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑡 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
11 ovex 7385 . . . . . . 7 (ℝ ↑m (𝑋 × 𝑋)) ∈ V
1211rabex 5279 . . . . . 6 {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ∈ V
139, 10, 12fvmpt 6935 . . . . 5 (𝑋 ∈ V → (Met‘𝑋) = {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
141, 13syl 17 . . . 4 (𝑋𝐴 → (Met‘𝑋) = {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))})
1514eleq2d 2819 . . 3 (𝑋𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))}))
16 oveq 7358 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
1716eqeq1d 2735 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥𝑑𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
1817bibi1d 343 . . . . . 6 (𝑑 = 𝐷 → (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)))
19 oveq 7358 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑥) = (𝑧𝐷𝑥))
20 oveq 7358 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑧𝑑𝑦) = (𝑧𝐷𝑦))
2119, 20oveq12d 7370 . . . . . . . 8 (𝑑 = 𝐷 → ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
2216, 21breq12d 5106 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
2322ralbidv 3156 . . . . . 6 (𝑑 = 𝐷 → (∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)) ↔ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
2418, 23anbi12d 632 . . . . 5 (𝑑 = 𝐷 → ((((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
25242ralbidv 3197 . . . 4 (𝑑 = 𝐷 → (∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
2625elrab 3643 . . 3 (𝐷 ∈ {𝑑 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∣ ∀𝑥𝑋𝑦𝑋 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) + (𝑧𝑑𝑦)))} ↔ (𝐷 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
2715, 26bitrdi 287 . 2 (𝑋𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
28 reex 11104 . . . 4 ℝ ∈ V
29 sqxpexg 7694 . . . 4 (𝑋𝐴 → (𝑋 × 𝑋) ∈ V)
30 elmapg 8769 . . . 4 ((ℝ ∈ V ∧ (𝑋 × 𝑋) ∈ V) → (𝐷 ∈ (ℝ ↑m (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ))
3128, 29, 30sylancr 587 . . 3 (𝑋𝐴 → (𝐷 ∈ (ℝ ↑m (𝑋 × 𝑋)) ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ))
3231anbi1d 631 . 2 (𝑋𝐴 → ((𝐷 ∈ (ℝ ↑m (𝑋 × 𝑋)) ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
3327, 32bitrd 279 1 (𝑋𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437   class class class wbr 5093   × cxp 5617  wf 6482  cfv 6486  (class class class)co 7352  m cmap 8756  cr 11012  0cc0 11013   + caddc 11016  cle 11154  Metcmet 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-met 21287
This theorem is referenced by:  ismeti  24241  metflem  24244  ismet2  24249  dscmet  24488  nrmmetd  24490  rrxmet  25336  metf1o  37815  rrnmet  37889
  Copyright terms: Public domain W3C validator