MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mettri Structured version   Visualization version   GIF version

Theorem mettri 22435
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
mettri ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)))

Proof of Theorem mettri
StepHypRef Expression
1 mettri2 22424 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
21expcom 402 . . . 4 ((𝐶𝑋𝐴𝑋𝐵𝑋) → (𝐷 ∈ (Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))))
323coml 1157 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐷 ∈ (Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))))
43impcom 396 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
5 metsym 22433 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) = (𝐶𝐷𝐴))
653adant3r2 1234 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) = (𝐶𝐷𝐴))
76oveq1d 6856 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)) = ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
84, 7breqtrrd 4836 1 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155   class class class wbr 4808  cfv 6067  (class class class)co 6841   + caddc 10191  cle 10328  Metcmet 20004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-op 4340  df-uni 4594  df-br 4809  df-opab 4871  df-mpt 4888  df-id 5184  df-po 5197  df-so 5198  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-er 7946  df-map 8061  df-en 8160  df-dom 8161  df-sdom 8162  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-xadd 12146  df-xmet 20011  df-met 20012
This theorem is referenced by:  mettri3  22437  mstri  22552  smcnlem  27942  mettrifi  33907
  Copyright terms: Public domain W3C validator