| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > midbtwn | Structured version Visualization version GIF version | ||
| Description: Betweenness of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismid.d | ⊢ − = (dist‘𝐺) |
| ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| midcl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| midcl.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| midbtwn | ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐴𝐼𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismid.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | ismid.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | ismid.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | ismid.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | midcl.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 6 | ismid.1 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 7 | midcl.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | 1, 2, 3, 4, 6, 7, 5 | midcl 28741 | . 2 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ 𝑃) |
| 9 | eqid 2729 | . . . 4 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
| 10 | eqid 2729 | . . . 4 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
| 11 | eqid 2729 | . . . 4 ⊢ ((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵)) = ((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵)) | |
| 12 | 1, 2, 3, 9, 10, 4, 8, 11, 7 | mirbtwn 28622 | . . 3 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ ((((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴)𝐼𝐴)) |
| 13 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐴(midG‘𝐺)𝐵)) | |
| 14 | 1, 2, 3, 4, 6, 7, 5, 10, 8 | ismidb 28742 | . . . . 5 ⊢ (𝜑 → (𝐵 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = (𝐴(midG‘𝐺)𝐵))) |
| 15 | 13, 14 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐵 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴)) |
| 16 | 15 | oveq1d 7368 | . . 3 ⊢ (𝜑 → (𝐵𝐼𝐴) = ((((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴)𝐼𝐴)) |
| 17 | 12, 16 | eleqtrrd 2831 | . 2 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐵𝐼𝐴)) |
| 18 | 1, 2, 3, 4, 5, 8, 7, 17 | tgbtwncom 28452 | 1 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐴𝐼𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 2c2 12202 Basecbs 17139 distcds 17189 TarskiGcstrkg 28391 DimTarskiG≥cstrkgld 28395 Itvcitv 28397 LineGclng 28398 pInvGcmir 28616 midGcmid 28736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-n0 12404 df-xnn0 12477 df-z 12491 df-uz 12755 df-fz 13430 df-fzo 13577 df-hash 14257 df-word 14440 df-concat 14497 df-s1 14522 df-s2 14774 df-s3 14775 df-trkgc 28412 df-trkgb 28413 df-trkgcb 28414 df-trkgld 28416 df-trkg 28417 df-cgrg 28475 df-leg 28547 df-mir 28617 df-rag 28658 df-perpg 28660 df-mid 28738 |
| This theorem is referenced by: midid 28745 midcom 28746 lmieu 28748 lmimid 28758 lmiisolem 28760 hypcgrlem1 28763 hypcgrlem2 28764 lmiopp 28766 |
| Copyright terms: Public domain | W3C validator |