Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > midbtwn | Structured version Visualization version GIF version |
Description: Betweenness of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
midcl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
midcl.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
midbtwn | ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐴𝐼𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismid.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | ismid.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ismid.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | midcl.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
6 | ismid.1 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
7 | midcl.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | 1, 2, 3, 4, 6, 7, 5 | midcl 26655 | . 2 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ 𝑃) |
9 | eqid 2759 | . . . 4 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
10 | eqid 2759 | . . . 4 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
11 | eqid 2759 | . . . 4 ⊢ ((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵)) = ((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵)) | |
12 | 1, 2, 3, 9, 10, 4, 8, 11, 7 | mirbtwn 26536 | . . 3 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ ((((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴)𝐼𝐴)) |
13 | eqidd 2760 | . . . . 5 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐴(midG‘𝐺)𝐵)) | |
14 | 1, 2, 3, 4, 6, 7, 5, 10, 8 | ismidb 26656 | . . . . 5 ⊢ (𝜑 → (𝐵 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = (𝐴(midG‘𝐺)𝐵))) |
15 | 13, 14 | mpbird 260 | . . . 4 ⊢ (𝜑 → 𝐵 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴)) |
16 | 15 | oveq1d 7158 | . . 3 ⊢ (𝜑 → (𝐵𝐼𝐴) = ((((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐵))‘𝐴)𝐼𝐴)) |
17 | 12, 16 | eleqtrrd 2854 | . 2 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐵𝐼𝐴)) |
18 | 1, 2, 3, 4, 5, 8, 7, 17 | tgbtwncom 26366 | 1 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐴𝐼𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 class class class wbr 5025 ‘cfv 6328 (class class class)co 7143 2c2 11714 Basecbs 16526 distcds 16617 TarskiGcstrkg 26308 DimTarskiG≥cstrkgld 26312 Itvcitv 26314 LineGclng 26315 pInvGcmir 26530 midGcmid 26650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-om 7573 df-1st 7686 df-2nd 7687 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-1o 8105 df-oadd 8109 df-er 8292 df-map 8411 df-pm 8412 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 df-dju 9348 df-card 9386 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-nn 11660 df-2 11722 df-3 11723 df-n0 11920 df-xnn0 11992 df-z 12006 df-uz 12268 df-fz 12925 df-fzo 13068 df-hash 13726 df-word 13899 df-concat 13955 df-s1 13982 df-s2 14242 df-s3 14243 df-trkgc 26326 df-trkgb 26327 df-trkgcb 26328 df-trkgld 26330 df-trkg 26331 df-cgrg 26389 df-leg 26461 df-mir 26531 df-rag 26572 df-perpg 26574 df-mid 26652 |
This theorem is referenced by: midid 26659 midcom 26660 lmieu 26662 lmimid 26672 lmiisolem 26674 hypcgrlem1 26677 hypcgrlem2 26678 lmiopp 26680 |
Copyright terms: Public domain | W3C validator |