MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismidb Structured version   Visualization version   GIF version

Theorem ismidb 25884
Description: Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
midcl.1 (𝜑𝐴𝑃)
midcl.2 (𝜑𝐵𝑃)
ismidb.s 𝑆 = (pInvG‘𝐺)
ismidb.m (𝜑𝑀𝑃)
Assertion
Ref Expression
ismidb (𝜑 → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀))

Proof of Theorem ismidb
Dummy variables 𝑚 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismidb.m . . 3 (𝜑𝑀𝑃)
2 ismid.p . . . 4 𝑃 = (Base‘𝐺)
3 ismid.d . . . 4 = (dist‘𝐺)
4 ismid.i . . . 4 𝐼 = (Itv‘𝐺)
5 eqid 2806 . . . 4 (LineG‘𝐺) = (LineG‘𝐺)
6 ismid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
7 ismidb.s . . . 4 𝑆 = (pInvG‘𝐺)
8 midcl.1 . . . 4 (𝜑𝐴𝑃)
9 midcl.2 . . . 4 (𝜑𝐵𝑃)
10 ismid.1 . . . 4 (𝜑𝐺DimTarskiG≥2)
112, 3, 4, 5, 6, 7, 8, 9, 10mideu 25844 . . 3 (𝜑 → ∃!𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴))
12 fveq2 6408 . . . . . 6 (𝑚 = 𝑀 → (𝑆𝑚) = (𝑆𝑀))
1312fveq1d 6410 . . . . 5 (𝑚 = 𝑀 → ((𝑆𝑚)‘𝐴) = ((𝑆𝑀)‘𝐴))
1413eqeq2d 2816 . . . 4 (𝑚 = 𝑀 → (𝐵 = ((𝑆𝑚)‘𝐴) ↔ 𝐵 = ((𝑆𝑀)‘𝐴)))
1514riota2 6857 . . 3 ((𝑀𝑃 ∧ ∃!𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) = 𝑀))
161, 11, 15syl2anc 575 . 2 (𝜑 → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) = 𝑀))
17 df-mid 25880 . . . . . 6 midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))))
1817a1i 11 . . . . 5 (𝜑 → midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))))
19 fveq2 6408 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2019, 2syl6eqr 2858 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
21 fveq2 6408 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺))
2221, 7syl6eqr 2858 . . . . . . . . . . 11 (𝑔 = 𝐺 → (pInvG‘𝑔) = 𝑆)
2322fveq1d 6410 . . . . . . . . . 10 (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = (𝑆𝑚))
2423fveq1d 6410 . . . . . . . . 9 (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = ((𝑆𝑚)‘𝑎))
2524eqeq2d 2816 . . . . . . . 8 (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = ((𝑆𝑚)‘𝑎)))
2620, 25riotaeqbidv 6838 . . . . . . 7 (𝑔 = 𝐺 → (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎)))
2720, 20, 26mpt2eq123dv 6947 . . . . . 6 (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))))
2827adantl 469 . . . . 5 ((𝜑𝑔 = 𝐺) → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))))
29 elex 3406 . . . . . 6 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
306, 29syl 17 . . . . 5 (𝜑𝐺 ∈ V)
312fvexi 6422 . . . . . . 7 𝑃 ∈ V
3231, 31mpt2ex 7480 . . . . . 6 (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))) ∈ V
3332a1i 11 . . . . 5 (𝜑 → (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))) ∈ V)
3418, 28, 30, 33fvmptd 6509 . . . 4 (𝜑 → (midG‘𝐺) = (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))))
35 simprr 780 . . . . . 6 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑏 = 𝐵)
36 simprl 778 . . . . . . 7 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑎 = 𝐴)
3736fveq2d 6412 . . . . . 6 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → ((𝑆𝑚)‘𝑎) = ((𝑆𝑚)‘𝐴))
3835, 37eqeq12d 2821 . . . . 5 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑏 = ((𝑆𝑚)‘𝑎) ↔ 𝐵 = ((𝑆𝑚)‘𝐴)))
3938riotabidv 6837 . . . 4 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎)) = (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)))
40 riotacl 6849 . . . . 5 (∃!𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴) → (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) ∈ 𝑃)
4111, 40syl 17 . . . 4 (𝜑 → (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) ∈ 𝑃)
4234, 39, 8, 9, 41ovmpt2d 7018 . . 3 (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)))
4342eqeq1d 2808 . 2 (𝜑 → ((𝐴(midG‘𝐺)𝐵) = 𝑀 ↔ (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) = 𝑀))
4416, 43bitr4d 273 1 (𝜑 → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  ∃!wreu 3098  Vcvv 3391   class class class wbr 4844  cmpt 4923  cfv 6101  crio 6834  (class class class)co 6874  cmpt2 6876  2c2 11356  Basecbs 16068  distcds 16162  TarskiGcstrkg 25543  DimTarskiGcstrkgld 25547  Itvcitv 25549  LineGclng 25550  pInvGcmir 25761  midGcmid 25878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-oadd 7800  df-er 7979  df-map 8094  df-pm 8095  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-card 9048  df-cda 9275  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-2 11364  df-3 11365  df-n0 11560  df-xnn0 11630  df-z 11644  df-uz 11905  df-fz 12550  df-fzo 12690  df-hash 13338  df-word 13510  df-concat 13512  df-s1 13513  df-s2 13817  df-s3 13818  df-trkgc 25561  df-trkgb 25562  df-trkgcb 25563  df-trkgld 25565  df-trkg 25566  df-cgrg 25620  df-leg 25692  df-mir 25762  df-rag 25803  df-perpg 25805  df-mid 25880
This theorem is referenced by:  midbtwn  25885  midcgr  25886  midcom  25888  mirmid  25889  lmieu  25890  lmimid  25900  lmiisolem  25902  hypcgrlem1  25905  hypcgrlem2  25906  hypcgr  25907  trgcopyeulem  25911
  Copyright terms: Public domain W3C validator