MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismidb Structured version   Visualization version   GIF version

Theorem ismidb 28705
Description: Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
midcl.1 (𝜑𝐴𝑃)
midcl.2 (𝜑𝐵𝑃)
ismidb.s 𝑆 = (pInvG‘𝐺)
ismidb.m (𝜑𝑀𝑃)
Assertion
Ref Expression
ismidb (𝜑 → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀))

Proof of Theorem ismidb
Dummy variables 𝑚 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismidb.m . . 3 (𝜑𝑀𝑃)
2 ismid.p . . . 4 𝑃 = (Base‘𝐺)
3 ismid.d . . . 4 = (dist‘𝐺)
4 ismid.i . . . 4 𝐼 = (Itv‘𝐺)
5 eqid 2726 . . . 4 (LineG‘𝐺) = (LineG‘𝐺)
6 ismid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
7 ismidb.s . . . 4 𝑆 = (pInvG‘𝐺)
8 midcl.1 . . . 4 (𝜑𝐴𝑃)
9 midcl.2 . . . 4 (𝜑𝐵𝑃)
10 ismid.1 . . . 4 (𝜑𝐺DimTarskiG≥2)
112, 3, 4, 5, 6, 7, 8, 9, 10mideu 28665 . . 3 (𝜑 → ∃!𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴))
12 fveq2 6901 . . . . . 6 (𝑚 = 𝑀 → (𝑆𝑚) = (𝑆𝑀))
1312fveq1d 6903 . . . . 5 (𝑚 = 𝑀 → ((𝑆𝑚)‘𝐴) = ((𝑆𝑀)‘𝐴))
1413eqeq2d 2737 . . . 4 (𝑚 = 𝑀 → (𝐵 = ((𝑆𝑚)‘𝐴) ↔ 𝐵 = ((𝑆𝑀)‘𝐴)))
1514riota2 7406 . . 3 ((𝑀𝑃 ∧ ∃!𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) = 𝑀))
161, 11, 15syl2anc 582 . 2 (𝜑 → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) = 𝑀))
17 df-mid 28701 . . . . 5 midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))))
18 fveq2 6901 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
1918, 2eqtr4di 2784 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
20 fveq2 6901 . . . . . . . . . . 11 (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺))
2120, 7eqtr4di 2784 . . . . . . . . . 10 (𝑔 = 𝐺 → (pInvG‘𝑔) = 𝑆)
2221fveq1d 6903 . . . . . . . . 9 (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = (𝑆𝑚))
2322fveq1d 6903 . . . . . . . 8 (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = ((𝑆𝑚)‘𝑎))
2423eqeq2d 2737 . . . . . . 7 (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = ((𝑆𝑚)‘𝑎)))
2519, 24riotaeqbidv 7383 . . . . . 6 (𝑔 = 𝐺 → (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎)))
2619, 19, 25mpoeq123dv 7500 . . . . 5 (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))))
276elexd 3485 . . . . 5 (𝜑𝐺 ∈ V)
282fvexi 6915 . . . . . . 7 𝑃 ∈ V
2928, 28mpoex 8093 . . . . . 6 (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))) ∈ V
3029a1i 11 . . . . 5 (𝜑 → (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))) ∈ V)
3117, 26, 27, 30fvmptd3 7032 . . . 4 (𝜑 → (midG‘𝐺) = (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))))
32 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑏 = 𝐵)
33 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑎 = 𝐴)
3433fveq2d 6905 . . . . . 6 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → ((𝑆𝑚)‘𝑎) = ((𝑆𝑚)‘𝐴))
3532, 34eqeq12d 2742 . . . . 5 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑏 = ((𝑆𝑚)‘𝑎) ↔ 𝐵 = ((𝑆𝑚)‘𝐴)))
3635riotabidv 7382 . . . 4 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎)) = (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)))
37 riotacl 7398 . . . . 5 (∃!𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴) → (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) ∈ 𝑃)
3811, 37syl 17 . . . 4 (𝜑 → (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) ∈ 𝑃)
3931, 36, 8, 9, 38ovmpod 7578 . . 3 (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)))
4039eqeq1d 2728 . 2 (𝜑 → ((𝐴(midG‘𝐺)𝐵) = 𝑀 ↔ (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) = 𝑀))
4116, 40bitr4d 281 1 (𝜑 → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  ∃!wreu 3362  Vcvv 3462   class class class wbr 5153  cfv 6554  crio 7379  (class class class)co 7424  cmpo 7426  2c2 12319  Basecbs 17213  distcds 17275  TarskiGcstrkg 28354  DimTarskiGcstrkgld 28358  Itvcitv 28360  LineGclng 28361  pInvGcmir 28579  midGcmid 28699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12597  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-hash 14348  df-word 14523  df-concat 14579  df-s1 14604  df-s2 14857  df-s3 14858  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkgld 28379  df-trkg 28380  df-cgrg 28438  df-leg 28510  df-mir 28580  df-rag 28621  df-perpg 28623  df-mid 28701
This theorem is referenced by:  midbtwn  28706  midcgr  28707  midcom  28709  mirmid  28710  lmieu  28711  lmimid  28721  lmiisolem  28723  hypcgrlem1  28726  hypcgrlem2  28727  hypcgr  28728  trgcopyeulem  28732
  Copyright terms: Public domain W3C validator