| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismidb | Structured version Visualization version GIF version | ||
| Description: Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismid.d | ⊢ − = (dist‘𝐺) |
| ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| midcl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| midcl.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ismidb.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| ismidb.m | ⊢ (𝜑 → 𝑀 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| ismidb | ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismidb.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑃) | |
| 2 | ismid.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | ismid.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 4 | ismid.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | eqid 2736 | . . . 4 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
| 6 | ismid.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | ismidb.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 8 | midcl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | midcl.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | ismid.1 | . . . 4 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | mideu 28722 | . . 3 ⊢ (𝜑 → ∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) |
| 12 | fveq2 6881 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑆‘𝑚) = (𝑆‘𝑀)) | |
| 13 | 12 | fveq1d 6883 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑆‘𝑚)‘𝐴) = ((𝑆‘𝑀)‘𝐴)) |
| 14 | 13 | eqeq2d 2747 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝐵 = ((𝑆‘𝑚)‘𝐴) ↔ 𝐵 = ((𝑆‘𝑀)‘𝐴))) |
| 15 | 14 | riota2 7392 | . . 3 ⊢ ((𝑀 ∈ 𝑃 ∧ ∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
| 16 | 1, 11, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
| 17 | df-mid 28758 | . . . . 5 ⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) | |
| 18 | fveq2 6881 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 19 | 18, 2 | eqtr4di 2789 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
| 20 | fveq2 6881 | . . . . . . . . . . 11 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺)) | |
| 21 | 20, 7 | eqtr4di 2789 | . . . . . . . . . 10 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = 𝑆) |
| 22 | 21 | fveq1d 6883 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = (𝑆‘𝑚)) |
| 23 | 22 | fveq1d 6883 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = ((𝑆‘𝑚)‘𝑎)) |
| 24 | 23 | eqeq2d 2747 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = ((𝑆‘𝑚)‘𝑎))) |
| 25 | 19, 24 | riotaeqbidv 7370 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) |
| 26 | 19, 19, 25 | mpoeq123dv 7487 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
| 27 | 6 | elexd 3488 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ V) |
| 28 | 2 | fvexi 6895 | . . . . . . 7 ⊢ 𝑃 ∈ V |
| 29 | 28, 28 | mpoex 8083 | . . . . . 6 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) ∈ V |
| 30 | 29 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) ∈ V) |
| 31 | 17, 26, 27, 30 | fvmptd3 7014 | . . . 4 ⊢ (𝜑 → (midG‘𝐺) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
| 32 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑏 = 𝐵) | |
| 33 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑎 = 𝐴) | |
| 34 | 33 | fveq2d 6885 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → ((𝑆‘𝑚)‘𝑎) = ((𝑆‘𝑚)‘𝐴)) |
| 35 | 32, 34 | eqeq12d 2752 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑏 = ((𝑆‘𝑚)‘𝑎) ↔ 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
| 36 | 35 | riotabidv 7369 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
| 37 | riotacl 7384 | . . . . 5 ⊢ (∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴) → (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) ∈ 𝑃) | |
| 38 | 11, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) ∈ 𝑃) |
| 39 | 31, 36, 8, 9, 38 | ovmpod 7564 | . . 3 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
| 40 | 39 | eqeq1d 2738 | . 2 ⊢ (𝜑 → ((𝐴(midG‘𝐺)𝐵) = 𝑀 ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
| 41 | 16, 40 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3362 Vcvv 3464 class class class wbr 5124 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 ∈ cmpo 7412 2c2 12300 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 DimTarskiG≥cstrkgld 28415 Itvcitv 28417 LineGclng 28418 pInvGcmir 28636 midGcmid 28756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 df-s1 14619 df-s2 14872 df-s3 14873 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkgld 28436 df-trkg 28437 df-cgrg 28495 df-leg 28567 df-mir 28637 df-rag 28678 df-perpg 28680 df-mid 28758 |
| This theorem is referenced by: midbtwn 28763 midcgr 28764 midcom 28766 mirmid 28767 lmieu 28768 lmimid 28778 lmiisolem 28780 hypcgrlem1 28783 hypcgrlem2 28784 hypcgr 28785 trgcopyeulem 28789 |
| Copyright terms: Public domain | W3C validator |