| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismidb | Structured version Visualization version GIF version | ||
| Description: Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismid.d | ⊢ − = (dist‘𝐺) |
| ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| midcl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| midcl.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ismidb.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| ismidb.m | ⊢ (𝜑 → 𝑀 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| ismidb | ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismidb.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑃) | |
| 2 | ismid.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | ismid.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 4 | ismid.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | eqid 2733 | . . . 4 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
| 6 | ismid.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | ismidb.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 8 | midcl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | midcl.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | ismid.1 | . . . 4 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | mideu 28736 | . . 3 ⊢ (𝜑 → ∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) |
| 12 | fveq2 6831 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑆‘𝑚) = (𝑆‘𝑀)) | |
| 13 | 12 | fveq1d 6833 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑆‘𝑚)‘𝐴) = ((𝑆‘𝑀)‘𝐴)) |
| 14 | 13 | eqeq2d 2744 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝐵 = ((𝑆‘𝑚)‘𝐴) ↔ 𝐵 = ((𝑆‘𝑀)‘𝐴))) |
| 15 | 14 | riota2 7337 | . . 3 ⊢ ((𝑀 ∈ 𝑃 ∧ ∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
| 16 | 1, 11, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
| 17 | df-mid 28772 | . . . . 5 ⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) | |
| 18 | fveq2 6831 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 19 | 18, 2 | eqtr4di 2786 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
| 20 | fveq2 6831 | . . . . . . . . . . 11 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺)) | |
| 21 | 20, 7 | eqtr4di 2786 | . . . . . . . . . 10 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = 𝑆) |
| 22 | 21 | fveq1d 6833 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = (𝑆‘𝑚)) |
| 23 | 22 | fveq1d 6833 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = ((𝑆‘𝑚)‘𝑎)) |
| 24 | 23 | eqeq2d 2744 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = ((𝑆‘𝑚)‘𝑎))) |
| 25 | 19, 24 | riotaeqbidv 7315 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) |
| 26 | 19, 19, 25 | mpoeq123dv 7430 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
| 27 | 6 | elexd 3461 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ V) |
| 28 | 2 | fvexi 6845 | . . . . . . 7 ⊢ 𝑃 ∈ V |
| 29 | 28, 28 | mpoex 8020 | . . . . . 6 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) ∈ V |
| 30 | 29 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) ∈ V) |
| 31 | 17, 26, 27, 30 | fvmptd3 6961 | . . . 4 ⊢ (𝜑 → (midG‘𝐺) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
| 32 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑏 = 𝐵) | |
| 33 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑎 = 𝐴) | |
| 34 | 33 | fveq2d 6835 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → ((𝑆‘𝑚)‘𝑎) = ((𝑆‘𝑚)‘𝐴)) |
| 35 | 32, 34 | eqeq12d 2749 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑏 = ((𝑆‘𝑚)‘𝑎) ↔ 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
| 36 | 35 | riotabidv 7314 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
| 37 | riotacl 7329 | . . . . 5 ⊢ (∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴) → (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) ∈ 𝑃) | |
| 38 | 11, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) ∈ 𝑃) |
| 39 | 31, 36, 8, 9, 38 | ovmpod 7507 | . . 3 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
| 40 | 39 | eqeq1d 2735 | . 2 ⊢ (𝜑 → ((𝐴(midG‘𝐺)𝐵) = 𝑀 ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
| 41 | 16, 40 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃!wreu 3345 Vcvv 3437 class class class wbr 5095 ‘cfv 6489 ℩crio 7311 (class class class)co 7355 ∈ cmpo 7357 2c2 12191 Basecbs 17127 distcds 17177 TarskiGcstrkg 28425 DimTarskiG≥cstrkgld 28429 Itvcitv 28431 LineGclng 28432 pInvGcmir 28650 midGcmid 28770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-hash 14245 df-word 14428 df-concat 14485 df-s1 14511 df-s2 14762 df-s3 14763 df-trkgc 28446 df-trkgb 28447 df-trkgcb 28448 df-trkgld 28450 df-trkg 28451 df-cgrg 28509 df-leg 28581 df-mir 28651 df-rag 28692 df-perpg 28694 df-mid 28772 |
| This theorem is referenced by: midbtwn 28777 midcgr 28778 midcom 28780 mirmid 28781 lmieu 28782 lmimid 28792 lmiisolem 28794 hypcgrlem1 28797 hypcgrlem2 28798 hypcgr 28799 trgcopyeulem 28803 |
| Copyright terms: Public domain | W3C validator |