MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismidb Structured version   Visualization version   GIF version

Theorem ismidb 27127
Description: Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
midcl.1 (𝜑𝐴𝑃)
midcl.2 (𝜑𝐵𝑃)
ismidb.s 𝑆 = (pInvG‘𝐺)
ismidb.m (𝜑𝑀𝑃)
Assertion
Ref Expression
ismidb (𝜑 → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀))

Proof of Theorem ismidb
Dummy variables 𝑚 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismidb.m . . 3 (𝜑𝑀𝑃)
2 ismid.p . . . 4 𝑃 = (Base‘𝐺)
3 ismid.d . . . 4 = (dist‘𝐺)
4 ismid.i . . . 4 𝐼 = (Itv‘𝐺)
5 eqid 2738 . . . 4 (LineG‘𝐺) = (LineG‘𝐺)
6 ismid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
7 ismidb.s . . . 4 𝑆 = (pInvG‘𝐺)
8 midcl.1 . . . 4 (𝜑𝐴𝑃)
9 midcl.2 . . . 4 (𝜑𝐵𝑃)
10 ismid.1 . . . 4 (𝜑𝐺DimTarskiG≥2)
112, 3, 4, 5, 6, 7, 8, 9, 10mideu 27087 . . 3 (𝜑 → ∃!𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴))
12 fveq2 6767 . . . . . 6 (𝑚 = 𝑀 → (𝑆𝑚) = (𝑆𝑀))
1312fveq1d 6769 . . . . 5 (𝑚 = 𝑀 → ((𝑆𝑚)‘𝐴) = ((𝑆𝑀)‘𝐴))
1413eqeq2d 2749 . . . 4 (𝑚 = 𝑀 → (𝐵 = ((𝑆𝑚)‘𝐴) ↔ 𝐵 = ((𝑆𝑀)‘𝐴)))
1514riota2 7251 . . 3 ((𝑀𝑃 ∧ ∃!𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) = 𝑀))
161, 11, 15syl2anc 584 . 2 (𝜑 → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) = 𝑀))
17 df-mid 27123 . . . . 5 midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))))
18 fveq2 6767 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
1918, 2eqtr4di 2796 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
20 fveq2 6767 . . . . . . . . . . 11 (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺))
2120, 7eqtr4di 2796 . . . . . . . . . 10 (𝑔 = 𝐺 → (pInvG‘𝑔) = 𝑆)
2221fveq1d 6769 . . . . . . . . 9 (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = (𝑆𝑚))
2322fveq1d 6769 . . . . . . . 8 (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = ((𝑆𝑚)‘𝑎))
2423eqeq2d 2749 . . . . . . 7 (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = ((𝑆𝑚)‘𝑎)))
2519, 24riotaeqbidv 7228 . . . . . 6 (𝑔 = 𝐺 → (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎)))
2619, 19, 25mpoeq123dv 7341 . . . . 5 (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))))
276elexd 3450 . . . . 5 (𝜑𝐺 ∈ V)
282fvexi 6781 . . . . . . 7 𝑃 ∈ V
2928, 28mpoex 7910 . . . . . 6 (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))) ∈ V
3029a1i 11 . . . . 5 (𝜑 → (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))) ∈ V)
3117, 26, 27, 30fvmptd3 6891 . . . 4 (𝜑 → (midG‘𝐺) = (𝑎𝑃, 𝑏𝑃 ↦ (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎))))
32 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑏 = 𝐵)
33 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝑎 = 𝐴)
3433fveq2d 6771 . . . . . 6 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → ((𝑆𝑚)‘𝑎) = ((𝑆𝑚)‘𝐴))
3532, 34eqeq12d 2754 . . . . 5 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑏 = ((𝑆𝑚)‘𝑎) ↔ 𝐵 = ((𝑆𝑚)‘𝐴)))
3635riotabidv 7227 . . . 4 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑚𝑃 𝑏 = ((𝑆𝑚)‘𝑎)) = (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)))
37 riotacl 7243 . . . . 5 (∃!𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴) → (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) ∈ 𝑃)
3811, 37syl 17 . . . 4 (𝜑 → (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) ∈ 𝑃)
3931, 36, 8, 9, 38ovmpod 7416 . . 3 (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)))
4039eqeq1d 2740 . 2 (𝜑 → ((𝐴(midG‘𝐺)𝐵) = 𝑀 ↔ (𝑚𝑃 𝐵 = ((𝑆𝑚)‘𝐴)) = 𝑀))
4116, 40bitr4d 281 1 (𝜑 → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  ∃!wreu 3066  Vcvv 3430   class class class wbr 5074  cfv 6427  crio 7224  (class class class)co 7268  cmpo 7270  2c2 12016  Basecbs 16900  distcds 16959  TarskiGcstrkg 26776  DimTarskiGcstrkgld 26780  Itvcitv 26782  LineGclng 26783  pInvGcmir 27001  midGcmid 27121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-oadd 8289  df-er 8486  df-map 8605  df-pm 8606  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-dju 9647  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-nn 11962  df-2 12024  df-3 12025  df-n0 12222  df-xnn0 12294  df-z 12308  df-uz 12571  df-fz 13228  df-fzo 13371  df-hash 14033  df-word 14206  df-concat 14262  df-s1 14289  df-s2 14549  df-s3 14550  df-trkgc 26797  df-trkgb 26798  df-trkgcb 26799  df-trkgld 26801  df-trkg 26802  df-cgrg 26860  df-leg 26932  df-mir 27002  df-rag 27043  df-perpg 27045  df-mid 27123
This theorem is referenced by:  midbtwn  27128  midcgr  27129  midcom  27131  mirmid  27132  lmieu  27133  lmimid  27143  lmiisolem  27145  hypcgrlem1  27148  hypcgrlem2  27149  hypcgr  27150  trgcopyeulem  27154
  Copyright terms: Public domain W3C validator