| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismidb | Structured version Visualization version GIF version | ||
| Description: Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismid.d | ⊢ − = (dist‘𝐺) |
| ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| midcl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| midcl.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ismidb.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| ismidb.m | ⊢ (𝜑 → 𝑀 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| ismidb | ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismidb.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑃) | |
| 2 | ismid.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | ismid.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 4 | ismid.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | eqid 2731 | . . . 4 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
| 6 | ismid.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | ismidb.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 8 | midcl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | midcl.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | ismid.1 | . . . 4 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | mideu 28711 | . . 3 ⊢ (𝜑 → ∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) |
| 12 | fveq2 6817 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑆‘𝑚) = (𝑆‘𝑀)) | |
| 13 | 12 | fveq1d 6819 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑆‘𝑚)‘𝐴) = ((𝑆‘𝑀)‘𝐴)) |
| 14 | 13 | eqeq2d 2742 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝐵 = ((𝑆‘𝑚)‘𝐴) ↔ 𝐵 = ((𝑆‘𝑀)‘𝐴))) |
| 15 | 14 | riota2 7323 | . . 3 ⊢ ((𝑀 ∈ 𝑃 ∧ ∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
| 16 | 1, 11, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
| 17 | df-mid 28747 | . . . . 5 ⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) | |
| 18 | fveq2 6817 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 19 | 18, 2 | eqtr4di 2784 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
| 20 | fveq2 6817 | . . . . . . . . . . 11 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺)) | |
| 21 | 20, 7 | eqtr4di 2784 | . . . . . . . . . 10 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = 𝑆) |
| 22 | 21 | fveq1d 6819 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = (𝑆‘𝑚)) |
| 23 | 22 | fveq1d 6819 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = ((𝑆‘𝑚)‘𝑎)) |
| 24 | 23 | eqeq2d 2742 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = ((𝑆‘𝑚)‘𝑎))) |
| 25 | 19, 24 | riotaeqbidv 7301 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) |
| 26 | 19, 19, 25 | mpoeq123dv 7416 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
| 27 | 6 | elexd 3460 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ V) |
| 28 | 2 | fvexi 6831 | . . . . . . 7 ⊢ 𝑃 ∈ V |
| 29 | 28, 28 | mpoex 8006 | . . . . . 6 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) ∈ V |
| 30 | 29 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) ∈ V) |
| 31 | 17, 26, 27, 30 | fvmptd3 6947 | . . . 4 ⊢ (𝜑 → (midG‘𝐺) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
| 32 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑏 = 𝐵) | |
| 33 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑎 = 𝐴) | |
| 34 | 33 | fveq2d 6821 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → ((𝑆‘𝑚)‘𝑎) = ((𝑆‘𝑚)‘𝐴)) |
| 35 | 32, 34 | eqeq12d 2747 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑏 = ((𝑆‘𝑚)‘𝑎) ↔ 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
| 36 | 35 | riotabidv 7300 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
| 37 | riotacl 7315 | . . . . 5 ⊢ (∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴) → (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) ∈ 𝑃) | |
| 38 | 11, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) ∈ 𝑃) |
| 39 | 31, 36, 8, 9, 38 | ovmpod 7493 | . . 3 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
| 40 | 39 | eqeq1d 2733 | . 2 ⊢ (𝜑 → ((𝐴(midG‘𝐺)𝐵) = 𝑀 ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
| 41 | 16, 40 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃!wreu 3344 Vcvv 3436 class class class wbr 5086 ‘cfv 6476 ℩crio 7297 (class class class)co 7341 ∈ cmpo 7343 2c2 12175 Basecbs 17115 distcds 17165 TarskiGcstrkg 28400 DimTarskiG≥cstrkgld 28404 Itvcitv 28406 LineGclng 28407 pInvGcmir 28625 midGcmid 28745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 df-s2 14750 df-s3 14751 df-trkgc 28421 df-trkgb 28422 df-trkgcb 28423 df-trkgld 28425 df-trkg 28426 df-cgrg 28484 df-leg 28556 df-mir 28626 df-rag 28667 df-perpg 28669 df-mid 28747 |
| This theorem is referenced by: midbtwn 28752 midcgr 28753 midcom 28755 mirmid 28756 lmieu 28757 lmimid 28767 lmiisolem 28769 hypcgrlem1 28772 hypcgrlem2 28773 hypcgr 28774 trgcopyeulem 28778 |
| Copyright terms: Public domain | W3C validator |