| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mopn | Structured version Visualization version GIF version | ||
| Description: Define a function whose value is the family of open sets of a metric space. See elmopn 24452 for its main property. (Contributed by NM, 1-Sep-2006.) |
| Ref | Expression |
|---|---|
| df-mopn | ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmopn 21354 | . 2 class MetOpen | |
| 2 | vd | . . 3 setvar 𝑑 | |
| 3 | cxmet 21349 | . . . . 5 class ∞Met | |
| 4 | 3 | crn 5686 | . . . 4 class ran ∞Met |
| 5 | 4 | cuni 4907 | . . 3 class ∪ ran ∞Met |
| 6 | 2 | cv 1539 | . . . . . 6 class 𝑑 |
| 7 | cbl 21351 | . . . . . 6 class ball | |
| 8 | 6, 7 | cfv 6561 | . . . . 5 class (ball‘𝑑) |
| 9 | 8 | crn 5686 | . . . 4 class ran (ball‘𝑑) |
| 10 | ctg 17482 | . . . 4 class topGen | |
| 11 | 9, 10 | cfv 6561 | . . 3 class (topGen‘ran (ball‘𝑑)) |
| 12 | 2, 5, 11 | cmpt 5225 | . 2 class (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) |
| 13 | 1, 12 | wceq 1540 | 1 wff MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: mopnval 24448 isxms2 24458 setsmstopn 24490 tngtopn 24671 |
| Copyright terms: Public domain | W3C validator |