MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mopn Structured version   Visualization version   GIF version

Definition df-mopn 21236
Description: Define a function whose value is the family of open sets of a metric space. See elmopn 24306 for its main property. (Contributed by NM, 1-Sep-2006.)
Assertion
Ref Expression
df-mopn MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))

Detailed syntax breakdown of Definition df-mopn
StepHypRef Expression
1 cmopn 21230 . 2 class MetOpen
2 vd . . 3 setvar 𝑑
3 cxmet 21225 . . . . 5 class ∞Met
43crn 5632 . . . 4 class ran ∞Met
54cuni 4867 . . 3 class ran ∞Met
62cv 1539 . . . . . 6 class 𝑑
7 cbl 21227 . . . . . 6 class ball
86, 7cfv 6499 . . . . 5 class (ball‘𝑑)
98crn 5632 . . . 4 class ran (ball‘𝑑)
10 ctg 17376 . . . 4 class topGen
119, 10cfv 6499 . . 3 class (topGen‘ran (ball‘𝑑))
122, 5, 11cmpt 5183 . 2 class (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
131, 12wceq 1540 1 wff MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
Colors of variables: wff setvar class
This definition is referenced by:  mopnval  24302  isxms2  24312  setsmstopn  24342  tngtopn  24514
  Copyright terms: Public domain W3C validator