MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngtopn Structured version   Visualization version   GIF version

Theorem tngtopn 24545
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngtset.2 𝐷 = (dist‘𝑇)
tngtset.3 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tngtopn ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopOpen‘𝑇))

Proof of Theorem tngtopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngbas.t . . 3 𝑇 = (𝐺 toNrmGrp 𝑁)
2 tngtset.2 . . 3 𝐷 = (dist‘𝑇)
3 tngtset.3 . . 3 𝐽 = (MetOpen‘𝐷)
41, 2, 3tngtset 24544 . 2 ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopSet‘𝑇))
5 df-mopn 21267 . . . . . . . . 9 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
65dmmptss 6217 . . . . . . . 8 dom MetOpen ⊆ ran ∞Met
76sseli 3945 . . . . . . 7 (𝐷 ∈ dom MetOpen → 𝐷 ran ∞Met)
8 eqid 2730 . . . . . . . . . . . . . . . . . 18 (-g𝐺) = (-g𝐺)
91, 8tngds 24543 . . . . . . . . . . . . . . . . 17 (𝑁𝑊 → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
109, 2eqtr4di 2783 . . . . . . . . . . . . . . . 16 (𝑁𝑊 → (𝑁 ∘ (-g𝐺)) = 𝐷)
1110adantl 481 . . . . . . . . . . . . . . 15 ((𝐺𝑉𝑁𝑊) → (𝑁 ∘ (-g𝐺)) = 𝐷)
1211dmeqd 5872 . . . . . . . . . . . . . 14 ((𝐺𝑉𝑁𝑊) → dom (𝑁 ∘ (-g𝐺)) = dom 𝐷)
13 dmcoss 5941 . . . . . . . . . . . . . . 15 dom (𝑁 ∘ (-g𝐺)) ⊆ dom (-g𝐺)
14 eqid 2730 . . . . . . . . . . . . . . . . 17 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2730 . . . . . . . . . . . . . . . . 17 (+g𝐺) = (+g𝐺)
16 eqid 2730 . . . . . . . . . . . . . . . . 17 (invg𝐺) = (invg𝐺)
1714, 15, 16, 8grpsubfval 18922 . . . . . . . . . . . . . . . 16 (-g𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
18 ovex 7423 . . . . . . . . . . . . . . . 16 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ V
1917, 18dmmpo 8053 . . . . . . . . . . . . . . 15 dom (-g𝐺) = ((Base‘𝐺) × (Base‘𝐺))
2013, 19sseqtri 3998 . . . . . . . . . . . . . 14 dom (𝑁 ∘ (-g𝐺)) ⊆ ((Base‘𝐺) × (Base‘𝐺))
2112, 20eqsstrrdi 3995 . . . . . . . . . . . . 13 ((𝐺𝑉𝑁𝑊) → dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)))
2221adantr 480 . . . . . . . . . . . 12 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)))
23 dmss 5869 . . . . . . . . . . . 12 (dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)) → dom dom 𝐷 ⊆ dom ((Base‘𝐺) × (Base‘𝐺)))
2422, 23syl 17 . . . . . . . . . . 11 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 ⊆ dom ((Base‘𝐺) × (Base‘𝐺)))
25 dmxpid 5897 . . . . . . . . . . 11 dom ((Base‘𝐺) × (Base‘𝐺)) = (Base‘𝐺)
2624, 25sseqtrdi 3990 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 ⊆ (Base‘𝐺))
27 simpr 484 . . . . . . . . . . . 12 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → 𝐷 ran ∞Met)
28 xmetunirn 24232 . . . . . . . . . . . 12 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
2927, 28sylib 218 . . . . . . . . . . 11 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
30 eqid 2730 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3130mopnuni 24336 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = (MetOpen‘𝐷))
3229, 31syl 17 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 = (MetOpen‘𝐷))
331, 14tngbas 24536 . . . . . . . . . . 11 (𝑁𝑊 → (Base‘𝐺) = (Base‘𝑇))
3433ad2antlr 727 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (Base‘𝐺) = (Base‘𝑇))
3526, 32, 343sstr3d 4004 . . . . . . . . 9 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ (Base‘𝑇))
36 sspwuni 5067 . . . . . . . . 9 ((MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇) ↔ (MetOpen‘𝐷) ⊆ (Base‘𝑇))
3735, 36sylibr 234 . . . . . . . 8 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
3837ex 412 . . . . . . 7 ((𝐺𝑉𝑁𝑊) → (𝐷 ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇)))
397, 38syl5 34 . . . . . 6 ((𝐺𝑉𝑁𝑊) → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇)))
40 ndmfv 6896 . . . . . . 7 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅)
41 0ss 4366 . . . . . . 7 ∅ ⊆ 𝒫 (Base‘𝑇)
4240, 41eqsstrdi 3994 . . . . . 6 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
4339, 42pm2.61d1 180 . . . . 5 ((𝐺𝑉𝑁𝑊) → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
443, 43eqsstrid 3988 . . . 4 ((𝐺𝑉𝑁𝑊) → 𝐽 ⊆ 𝒫 (Base‘𝑇))
454, 44eqsstrrd 3985 . . 3 ((𝐺𝑉𝑁𝑊) → (TopSet‘𝑇) ⊆ 𝒫 (Base‘𝑇))
46 eqid 2730 . . . 4 (Base‘𝑇) = (Base‘𝑇)
47 eqid 2730 . . . 4 (TopSet‘𝑇) = (TopSet‘𝑇)
4846, 47topnid 17405 . . 3 ((TopSet‘𝑇) ⊆ 𝒫 (Base‘𝑇) → (TopSet‘𝑇) = (TopOpen‘𝑇))
4945, 48syl 17 . 2 ((𝐺𝑉𝑁𝑊) → (TopSet‘𝑇) = (TopOpen‘𝑇))
504, 49eqtrd 2765 1 ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopOpen‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   × cxp 5639  dom cdm 5641  ran crn 5642  ccom 5645  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  TopSetcts 17233  distcds 17236  TopOpenctopn 17391  topGenctg 17407  invgcminusg 18873  -gcsg 18874  ∞Metcxmet 21256  ballcbl 21258  MetOpencmopn 21261   toNrmGrp ctng 24473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-tset 17246  df-ds 17249  df-rest 17392  df-topn 17393  df-topgen 17413  df-sbg 18877  df-psmet 21263  df-xmet 21264  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-tng 24479
This theorem is referenced by:  tngngp2  24547  tcphtopn  25133
  Copyright terms: Public domain W3C validator