MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngtopn Structured version   Visualization version   GIF version

Theorem tngtopn 23814
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngtset.2 𝐷 = (dist‘𝑇)
tngtset.3 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tngtopn ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopOpen‘𝑇))

Proof of Theorem tngtopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngbas.t . . 3 𝑇 = (𝐺 toNrmGrp 𝑁)
2 tngtset.2 . . 3 𝐷 = (dist‘𝑇)
3 tngtset.3 . . 3 𝐽 = (MetOpen‘𝐷)
41, 2, 3tngtset 23813 . 2 ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopSet‘𝑇))
5 df-mopn 20593 . . . . . . . . 9 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
65dmmptss 6144 . . . . . . . 8 dom MetOpen ⊆ ran ∞Met
76sseli 3917 . . . . . . 7 (𝐷 ∈ dom MetOpen → 𝐷 ran ∞Met)
8 eqid 2738 . . . . . . . . . . . . . . . . . 18 (-g𝐺) = (-g𝐺)
91, 8tngds 23811 . . . . . . . . . . . . . . . . 17 (𝑁𝑊 → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
109, 2eqtr4di 2796 . . . . . . . . . . . . . . . 16 (𝑁𝑊 → (𝑁 ∘ (-g𝐺)) = 𝐷)
1110adantl 482 . . . . . . . . . . . . . . 15 ((𝐺𝑉𝑁𝑊) → (𝑁 ∘ (-g𝐺)) = 𝐷)
1211dmeqd 5814 . . . . . . . . . . . . . 14 ((𝐺𝑉𝑁𝑊) → dom (𝑁 ∘ (-g𝐺)) = dom 𝐷)
13 dmcoss 5880 . . . . . . . . . . . . . . 15 dom (𝑁 ∘ (-g𝐺)) ⊆ dom (-g𝐺)
14 eqid 2738 . . . . . . . . . . . . . . . . 17 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2738 . . . . . . . . . . . . . . . . 17 (+g𝐺) = (+g𝐺)
16 eqid 2738 . . . . . . . . . . . . . . . . 17 (invg𝐺) = (invg𝐺)
1714, 15, 16, 8grpsubfval 18623 . . . . . . . . . . . . . . . 16 (-g𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
18 ovex 7308 . . . . . . . . . . . . . . . 16 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ V
1917, 18dmmpo 7911 . . . . . . . . . . . . . . 15 dom (-g𝐺) = ((Base‘𝐺) × (Base‘𝐺))
2013, 19sseqtri 3957 . . . . . . . . . . . . . 14 dom (𝑁 ∘ (-g𝐺)) ⊆ ((Base‘𝐺) × (Base‘𝐺))
2112, 20eqsstrrdi 3976 . . . . . . . . . . . . 13 ((𝐺𝑉𝑁𝑊) → dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)))
2221adantr 481 . . . . . . . . . . . 12 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)))
23 dmss 5811 . . . . . . . . . . . 12 (dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)) → dom dom 𝐷 ⊆ dom ((Base‘𝐺) × (Base‘𝐺)))
2422, 23syl 17 . . . . . . . . . . 11 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 ⊆ dom ((Base‘𝐺) × (Base‘𝐺)))
25 dmxpid 5839 . . . . . . . . . . 11 dom ((Base‘𝐺) × (Base‘𝐺)) = (Base‘𝐺)
2624, 25sseqtrdi 3971 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 ⊆ (Base‘𝐺))
27 simpr 485 . . . . . . . . . . . 12 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → 𝐷 ran ∞Met)
28 xmetunirn 23490 . . . . . . . . . . . 12 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
2927, 28sylib 217 . . . . . . . . . . 11 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
30 eqid 2738 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3130mopnuni 23594 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = (MetOpen‘𝐷))
3229, 31syl 17 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 = (MetOpen‘𝐷))
331, 14tngbas 23798 . . . . . . . . . . 11 (𝑁𝑊 → (Base‘𝐺) = (Base‘𝑇))
3433ad2antlr 724 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (Base‘𝐺) = (Base‘𝑇))
3526, 32, 343sstr3d 3967 . . . . . . . . 9 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ (Base‘𝑇))
36 sspwuni 5029 . . . . . . . . 9 ((MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇) ↔ (MetOpen‘𝐷) ⊆ (Base‘𝑇))
3735, 36sylibr 233 . . . . . . . 8 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
3837ex 413 . . . . . . 7 ((𝐺𝑉𝑁𝑊) → (𝐷 ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇)))
397, 38syl5 34 . . . . . 6 ((𝐺𝑉𝑁𝑊) → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇)))
40 ndmfv 6804 . . . . . . 7 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅)
41 0ss 4330 . . . . . . 7 ∅ ⊆ 𝒫 (Base‘𝑇)
4240, 41eqsstrdi 3975 . . . . . 6 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
4339, 42pm2.61d1 180 . . . . 5 ((𝐺𝑉𝑁𝑊) → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
443, 43eqsstrid 3969 . . . 4 ((𝐺𝑉𝑁𝑊) → 𝐽 ⊆ 𝒫 (Base‘𝑇))
454, 44eqsstrrd 3960 . . 3 ((𝐺𝑉𝑁𝑊) → (TopSet‘𝑇) ⊆ 𝒫 (Base‘𝑇))
46 eqid 2738 . . . 4 (Base‘𝑇) = (Base‘𝑇)
47 eqid 2738 . . . 4 (TopSet‘𝑇) = (TopSet‘𝑇)
4846, 47topnid 17146 . . 3 ((TopSet‘𝑇) ⊆ 𝒫 (Base‘𝑇) → (TopSet‘𝑇) = (TopOpen‘𝑇))
4945, 48syl 17 . 2 ((𝐺𝑉𝑁𝑊) → (TopSet‘𝑇) = (TopOpen‘𝑇))
504, 49eqtrd 2778 1 ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopOpen‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   × cxp 5587  dom cdm 5589  ran crn 5590  ccom 5593  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  TopSetcts 16968  distcds 16971  TopOpenctopn 17132  topGenctg 17148  invgcminusg 18578  -gcsg 18579  ∞Metcxmet 20582  ballcbl 20584  MetOpencmopn 20587   toNrmGrp ctng 23734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-tset 16981  df-ds 16984  df-rest 17133  df-topn 17134  df-topgen 17154  df-sbg 18582  df-psmet 20589  df-xmet 20590  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-tng 23740
This theorem is referenced by:  tngngp2  23816  tcphtopn  24390
  Copyright terms: Public domain W3C validator