MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngtopn Structured version   Visualization version   GIF version

Theorem tngtopn 24672
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngtset.2 𝐷 = (dist‘𝑇)
tngtset.3 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tngtopn ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopOpen‘𝑇))

Proof of Theorem tngtopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngbas.t . . 3 𝑇 = (𝐺 toNrmGrp 𝑁)
2 tngtset.2 . . 3 𝐷 = (dist‘𝑇)
3 tngtset.3 . . 3 𝐽 = (MetOpen‘𝐷)
41, 2, 3tngtset 24671 . 2 ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopSet‘𝑇))
5 df-mopn 21361 . . . . . . . . 9 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
65dmmptss 6260 . . . . . . . 8 dom MetOpen ⊆ ran ∞Met
76sseli 3978 . . . . . . 7 (𝐷 ∈ dom MetOpen → 𝐷 ran ∞Met)
8 eqid 2736 . . . . . . . . . . . . . . . . . 18 (-g𝐺) = (-g𝐺)
91, 8tngds 24669 . . . . . . . . . . . . . . . . 17 (𝑁𝑊 → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
109, 2eqtr4di 2794 . . . . . . . . . . . . . . . 16 (𝑁𝑊 → (𝑁 ∘ (-g𝐺)) = 𝐷)
1110adantl 481 . . . . . . . . . . . . . . 15 ((𝐺𝑉𝑁𝑊) → (𝑁 ∘ (-g𝐺)) = 𝐷)
1211dmeqd 5915 . . . . . . . . . . . . . 14 ((𝐺𝑉𝑁𝑊) → dom (𝑁 ∘ (-g𝐺)) = dom 𝐷)
13 dmcoss 5984 . . . . . . . . . . . . . . 15 dom (𝑁 ∘ (-g𝐺)) ⊆ dom (-g𝐺)
14 eqid 2736 . . . . . . . . . . . . . . . . 17 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2736 . . . . . . . . . . . . . . . . 17 (+g𝐺) = (+g𝐺)
16 eqid 2736 . . . . . . . . . . . . . . . . 17 (invg𝐺) = (invg𝐺)
1714, 15, 16, 8grpsubfval 19002 . . . . . . . . . . . . . . . 16 (-g𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
18 ovex 7465 . . . . . . . . . . . . . . . 16 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ V
1917, 18dmmpo 8097 . . . . . . . . . . . . . . 15 dom (-g𝐺) = ((Base‘𝐺) × (Base‘𝐺))
2013, 19sseqtri 4031 . . . . . . . . . . . . . 14 dom (𝑁 ∘ (-g𝐺)) ⊆ ((Base‘𝐺) × (Base‘𝐺))
2112, 20eqsstrrdi 4028 . . . . . . . . . . . . 13 ((𝐺𝑉𝑁𝑊) → dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)))
2221adantr 480 . . . . . . . . . . . 12 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)))
23 dmss 5912 . . . . . . . . . . . 12 (dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)) → dom dom 𝐷 ⊆ dom ((Base‘𝐺) × (Base‘𝐺)))
2422, 23syl 17 . . . . . . . . . . 11 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 ⊆ dom ((Base‘𝐺) × (Base‘𝐺)))
25 dmxpid 5940 . . . . . . . . . . 11 dom ((Base‘𝐺) × (Base‘𝐺)) = (Base‘𝐺)
2624, 25sseqtrdi 4023 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 ⊆ (Base‘𝐺))
27 simpr 484 . . . . . . . . . . . 12 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → 𝐷 ran ∞Met)
28 xmetunirn 24348 . . . . . . . . . . . 12 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
2927, 28sylib 218 . . . . . . . . . . 11 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
30 eqid 2736 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3130mopnuni 24452 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = (MetOpen‘𝐷))
3229, 31syl 17 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 = (MetOpen‘𝐷))
331, 14tngbas 24656 . . . . . . . . . . 11 (𝑁𝑊 → (Base‘𝐺) = (Base‘𝑇))
3433ad2antlr 727 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (Base‘𝐺) = (Base‘𝑇))
3526, 32, 343sstr3d 4037 . . . . . . . . 9 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ (Base‘𝑇))
36 sspwuni 5099 . . . . . . . . 9 ((MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇) ↔ (MetOpen‘𝐷) ⊆ (Base‘𝑇))
3735, 36sylibr 234 . . . . . . . 8 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
3837ex 412 . . . . . . 7 ((𝐺𝑉𝑁𝑊) → (𝐷 ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇)))
397, 38syl5 34 . . . . . 6 ((𝐺𝑉𝑁𝑊) → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇)))
40 ndmfv 6940 . . . . . . 7 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅)
41 0ss 4399 . . . . . . 7 ∅ ⊆ 𝒫 (Base‘𝑇)
4240, 41eqsstrdi 4027 . . . . . 6 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
4339, 42pm2.61d1 180 . . . . 5 ((𝐺𝑉𝑁𝑊) → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
443, 43eqsstrid 4021 . . . 4 ((𝐺𝑉𝑁𝑊) → 𝐽 ⊆ 𝒫 (Base‘𝑇))
454, 44eqsstrrd 4018 . . 3 ((𝐺𝑉𝑁𝑊) → (TopSet‘𝑇) ⊆ 𝒫 (Base‘𝑇))
46 eqid 2736 . . . 4 (Base‘𝑇) = (Base‘𝑇)
47 eqid 2736 . . . 4 (TopSet‘𝑇) = (TopSet‘𝑇)
4846, 47topnid 17481 . . 3 ((TopSet‘𝑇) ⊆ 𝒫 (Base‘𝑇) → (TopSet‘𝑇) = (TopOpen‘𝑇))
4945, 48syl 17 . 2 ((𝐺𝑉𝑁𝑊) → (TopSet‘𝑇) = (TopOpen‘𝑇))
504, 49eqtrd 2776 1 ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopOpen‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wss 3950  c0 4332  𝒫 cpw 4599   cuni 4906   × cxp 5682  dom cdm 5684  ran crn 5685  ccom 5688  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  TopSetcts 17304  distcds 17307  TopOpenctopn 17467  topGenctg 17483  invgcminusg 18953  -gcsg 18954  ∞Metcxmet 21350  ballcbl 21352  MetOpencmopn 21355   toNrmGrp ctng 24592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-tset 17317  df-ds 17320  df-rest 17468  df-topn 17469  df-topgen 17489  df-sbg 18957  df-psmet 21357  df-xmet 21358  df-bl 21360  df-mopn 21361  df-top 22901  df-topon 22918  df-bases 22954  df-tng 24598
This theorem is referenced by:  tngngp2  24674  tcphtopn  25261
  Copyright terms: Public domain W3C validator