MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngtopn Structured version   Visualization version   GIF version

Theorem tngtopn 23720
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngtset.2 𝐷 = (dist‘𝑇)
tngtset.3 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tngtopn ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopOpen‘𝑇))

Proof of Theorem tngtopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngbas.t . . 3 𝑇 = (𝐺 toNrmGrp 𝑁)
2 tngtset.2 . . 3 𝐷 = (dist‘𝑇)
3 tngtset.3 . . 3 𝐽 = (MetOpen‘𝐷)
41, 2, 3tngtset 23719 . 2 ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopSet‘𝑇))
5 df-mopn 20506 . . . . . . . . 9 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
65dmmptss 6133 . . . . . . . 8 dom MetOpen ⊆ ran ∞Met
76sseli 3913 . . . . . . 7 (𝐷 ∈ dom MetOpen → 𝐷 ran ∞Met)
8 eqid 2738 . . . . . . . . . . . . . . . . . 18 (-g𝐺) = (-g𝐺)
91, 8tngds 23717 . . . . . . . . . . . . . . . . 17 (𝑁𝑊 → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
109, 2eqtr4di 2797 . . . . . . . . . . . . . . . 16 (𝑁𝑊 → (𝑁 ∘ (-g𝐺)) = 𝐷)
1110adantl 481 . . . . . . . . . . . . . . 15 ((𝐺𝑉𝑁𝑊) → (𝑁 ∘ (-g𝐺)) = 𝐷)
1211dmeqd 5803 . . . . . . . . . . . . . 14 ((𝐺𝑉𝑁𝑊) → dom (𝑁 ∘ (-g𝐺)) = dom 𝐷)
13 dmcoss 5869 . . . . . . . . . . . . . . 15 dom (𝑁 ∘ (-g𝐺)) ⊆ dom (-g𝐺)
14 eqid 2738 . . . . . . . . . . . . . . . . 17 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2738 . . . . . . . . . . . . . . . . 17 (+g𝐺) = (+g𝐺)
16 eqid 2738 . . . . . . . . . . . . . . . . 17 (invg𝐺) = (invg𝐺)
1714, 15, 16, 8grpsubfval 18538 . . . . . . . . . . . . . . . 16 (-g𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
18 ovex 7288 . . . . . . . . . . . . . . . 16 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ V
1917, 18dmmpo 7884 . . . . . . . . . . . . . . 15 dom (-g𝐺) = ((Base‘𝐺) × (Base‘𝐺))
2013, 19sseqtri 3953 . . . . . . . . . . . . . 14 dom (𝑁 ∘ (-g𝐺)) ⊆ ((Base‘𝐺) × (Base‘𝐺))
2112, 20eqsstrrdi 3972 . . . . . . . . . . . . 13 ((𝐺𝑉𝑁𝑊) → dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)))
2221adantr 480 . . . . . . . . . . . 12 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)))
23 dmss 5800 . . . . . . . . . . . 12 (dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)) → dom dom 𝐷 ⊆ dom ((Base‘𝐺) × (Base‘𝐺)))
2422, 23syl 17 . . . . . . . . . . 11 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 ⊆ dom ((Base‘𝐺) × (Base‘𝐺)))
25 dmxpid 5828 . . . . . . . . . . 11 dom ((Base‘𝐺) × (Base‘𝐺)) = (Base‘𝐺)
2624, 25sseqtrdi 3967 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 ⊆ (Base‘𝐺))
27 simpr 484 . . . . . . . . . . . 12 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → 𝐷 ran ∞Met)
28 xmetunirn 23398 . . . . . . . . . . . 12 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
2927, 28sylib 217 . . . . . . . . . . 11 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
30 eqid 2738 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3130mopnuni 23502 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = (MetOpen‘𝐷))
3229, 31syl 17 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 = (MetOpen‘𝐷))
331, 14tngbas 23704 . . . . . . . . . . 11 (𝑁𝑊 → (Base‘𝐺) = (Base‘𝑇))
3433ad2antlr 723 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (Base‘𝐺) = (Base‘𝑇))
3526, 32, 343sstr3d 3963 . . . . . . . . 9 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ (Base‘𝑇))
36 sspwuni 5025 . . . . . . . . 9 ((MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇) ↔ (MetOpen‘𝐷) ⊆ (Base‘𝑇))
3735, 36sylibr 233 . . . . . . . 8 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
3837ex 412 . . . . . . 7 ((𝐺𝑉𝑁𝑊) → (𝐷 ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇)))
397, 38syl5 34 . . . . . 6 ((𝐺𝑉𝑁𝑊) → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇)))
40 ndmfv 6786 . . . . . . 7 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅)
41 0ss 4327 . . . . . . 7 ∅ ⊆ 𝒫 (Base‘𝑇)
4240, 41eqsstrdi 3971 . . . . . 6 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
4339, 42pm2.61d1 180 . . . . 5 ((𝐺𝑉𝑁𝑊) → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
443, 43eqsstrid 3965 . . . 4 ((𝐺𝑉𝑁𝑊) → 𝐽 ⊆ 𝒫 (Base‘𝑇))
454, 44eqsstrrd 3956 . . 3 ((𝐺𝑉𝑁𝑊) → (TopSet‘𝑇) ⊆ 𝒫 (Base‘𝑇))
46 eqid 2738 . . . 4 (Base‘𝑇) = (Base‘𝑇)
47 eqid 2738 . . . 4 (TopSet‘𝑇) = (TopSet‘𝑇)
4846, 47topnid 17063 . . 3 ((TopSet‘𝑇) ⊆ 𝒫 (Base‘𝑇) → (TopSet‘𝑇) = (TopOpen‘𝑇))
4945, 48syl 17 . 2 ((𝐺𝑉𝑁𝑊) → (TopSet‘𝑇) = (TopOpen‘𝑇))
504, 49eqtrd 2778 1 ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopOpen‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   × cxp 5578  dom cdm 5580  ran crn 5581  ccom 5584  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  TopSetcts 16894  distcds 16897  TopOpenctopn 17049  topGenctg 17065  invgcminusg 18493  -gcsg 18494  ∞Metcxmet 20495  ballcbl 20497  MetOpencmopn 20500   toNrmGrp ctng 23640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-tset 16907  df-ds 16910  df-rest 17050  df-topn 17051  df-topgen 17071  df-sbg 18497  df-psmet 20502  df-xmet 20503  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-tng 23646
This theorem is referenced by:  tngngp2  23722  tcphtopn  24295
  Copyright terms: Public domain W3C validator