MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngtopn Structured version   Visualization version   GIF version

Theorem tngtopn 24628
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngtset.2 𝐷 = (dist‘𝑇)
tngtset.3 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tngtopn ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopOpen‘𝑇))

Proof of Theorem tngtopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngbas.t . . 3 𝑇 = (𝐺 toNrmGrp 𝑁)
2 tngtset.2 . . 3 𝐷 = (dist‘𝑇)
3 tngtset.3 . . 3 𝐽 = (MetOpen‘𝐷)
41, 2, 3tngtset 24627 . 2 ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopSet‘𝑇))
5 df-mopn 21309 . . . . . . . . 9 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
65dmmptss 6247 . . . . . . . 8 dom MetOpen ⊆ ran ∞Met
76sseli 3972 . . . . . . 7 (𝐷 ∈ dom MetOpen → 𝐷 ran ∞Met)
8 eqid 2725 . . . . . . . . . . . . . . . . . 18 (-g𝐺) = (-g𝐺)
91, 8tngds 24625 . . . . . . . . . . . . . . . . 17 (𝑁𝑊 → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
109, 2eqtr4di 2783 . . . . . . . . . . . . . . . 16 (𝑁𝑊 → (𝑁 ∘ (-g𝐺)) = 𝐷)
1110adantl 480 . . . . . . . . . . . . . . 15 ((𝐺𝑉𝑁𝑊) → (𝑁 ∘ (-g𝐺)) = 𝐷)
1211dmeqd 5908 . . . . . . . . . . . . . 14 ((𝐺𝑉𝑁𝑊) → dom (𝑁 ∘ (-g𝐺)) = dom 𝐷)
13 dmcoss 5974 . . . . . . . . . . . . . . 15 dom (𝑁 ∘ (-g𝐺)) ⊆ dom (-g𝐺)
14 eqid 2725 . . . . . . . . . . . . . . . . 17 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2725 . . . . . . . . . . . . . . . . 17 (+g𝐺) = (+g𝐺)
16 eqid 2725 . . . . . . . . . . . . . . . . 17 (invg𝐺) = (invg𝐺)
1714, 15, 16, 8grpsubfval 18964 . . . . . . . . . . . . . . . 16 (-g𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
18 ovex 7452 . . . . . . . . . . . . . . . 16 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ V
1917, 18dmmpo 8076 . . . . . . . . . . . . . . 15 dom (-g𝐺) = ((Base‘𝐺) × (Base‘𝐺))
2013, 19sseqtri 4013 . . . . . . . . . . . . . 14 dom (𝑁 ∘ (-g𝐺)) ⊆ ((Base‘𝐺) × (Base‘𝐺))
2112, 20eqsstrrdi 4032 . . . . . . . . . . . . 13 ((𝐺𝑉𝑁𝑊) → dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)))
2221adantr 479 . . . . . . . . . . . 12 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)))
23 dmss 5905 . . . . . . . . . . . 12 (dom 𝐷 ⊆ ((Base‘𝐺) × (Base‘𝐺)) → dom dom 𝐷 ⊆ dom ((Base‘𝐺) × (Base‘𝐺)))
2422, 23syl 17 . . . . . . . . . . 11 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 ⊆ dom ((Base‘𝐺) × (Base‘𝐺)))
25 dmxpid 5932 . . . . . . . . . . 11 dom ((Base‘𝐺) × (Base‘𝐺)) = (Base‘𝐺)
2624, 25sseqtrdi 4027 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 ⊆ (Base‘𝐺))
27 simpr 483 . . . . . . . . . . . 12 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → 𝐷 ran ∞Met)
28 xmetunirn 24304 . . . . . . . . . . . 12 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
2927, 28sylib 217 . . . . . . . . . . 11 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
30 eqid 2725 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3130mopnuni 24408 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = (MetOpen‘𝐷))
3229, 31syl 17 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → dom dom 𝐷 = (MetOpen‘𝐷))
331, 14tngbas 24612 . . . . . . . . . . 11 (𝑁𝑊 → (Base‘𝐺) = (Base‘𝑇))
3433ad2antlr 725 . . . . . . . . . 10 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (Base‘𝐺) = (Base‘𝑇))
3526, 32, 343sstr3d 4023 . . . . . . . . 9 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ (Base‘𝑇))
36 sspwuni 5104 . . . . . . . . 9 ((MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇) ↔ (MetOpen‘𝐷) ⊆ (Base‘𝑇))
3735, 36sylibr 233 . . . . . . . 8 (((𝐺𝑉𝑁𝑊) ∧ 𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
3837ex 411 . . . . . . 7 ((𝐺𝑉𝑁𝑊) → (𝐷 ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇)))
397, 38syl5 34 . . . . . 6 ((𝐺𝑉𝑁𝑊) → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇)))
40 ndmfv 6931 . . . . . . 7 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅)
41 0ss 4398 . . . . . . 7 ∅ ⊆ 𝒫 (Base‘𝑇)
4240, 41eqsstrdi 4031 . . . . . 6 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
4339, 42pm2.61d1 180 . . . . 5 ((𝐺𝑉𝑁𝑊) → (MetOpen‘𝐷) ⊆ 𝒫 (Base‘𝑇))
443, 43eqsstrid 4025 . . . 4 ((𝐺𝑉𝑁𝑊) → 𝐽 ⊆ 𝒫 (Base‘𝑇))
454, 44eqsstrrd 4016 . . 3 ((𝐺𝑉𝑁𝑊) → (TopSet‘𝑇) ⊆ 𝒫 (Base‘𝑇))
46 eqid 2725 . . . 4 (Base‘𝑇) = (Base‘𝑇)
47 eqid 2725 . . . 4 (TopSet‘𝑇) = (TopSet‘𝑇)
4846, 47topnid 17436 . . 3 ((TopSet‘𝑇) ⊆ 𝒫 (Base‘𝑇) → (TopSet‘𝑇) = (TopOpen‘𝑇))
4945, 48syl 17 . 2 ((𝐺𝑉𝑁𝑊) → (TopSet‘𝑇) = (TopOpen‘𝑇))
504, 49eqtrd 2765 1 ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopOpen‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wss 3944  c0 4322  𝒫 cpw 4604   cuni 4909   × cxp 5676  dom cdm 5678  ran crn 5679  ccom 5682  cfv 6549  (class class class)co 7419  Basecbs 17199  +gcplusg 17252  TopSetcts 17258  distcds 17261  TopOpenctopn 17422  topGenctg 17438  invgcminusg 18915  -gcsg 18916  ∞Metcxmet 21298  ballcbl 21300  MetOpencmopn 21303   toNrmGrp ctng 24548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9472  df-inf 9473  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-tset 17271  df-ds 17274  df-rest 17423  df-topn 17424  df-topgen 17444  df-sbg 18919  df-psmet 21305  df-xmet 21306  df-bl 21308  df-mopn 21309  df-top 22857  df-topon 22874  df-bases 22910  df-tng 24554
This theorem is referenced by:  tngngp2  24630  tcphtopn  25215
  Copyright terms: Public domain W3C validator