| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsmstopn | Structured version Visualization version GIF version | ||
| Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
| setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
| setsms.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| setsmstopn | ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsms.x | . . 3 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
| 2 | setsms.d | . . 3 ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
| 3 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
| 4 | setsms.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | setsmstset 24381 | . 2 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
| 6 | df-mopn 21275 | . . . . . . . 8 ⊢ MetOpen = (𝑥 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑥))) | |
| 7 | 6 | dmmptss 6194 | . . . . . . 7 ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
| 8 | 7 | sseli 3933 | . . . . . 6 ⊢ (𝐷 ∈ dom MetOpen → 𝐷 ∈ ∪ ran ∞Met) |
| 9 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → 𝐷 ∈ ∪ ran ∞Met) | |
| 10 | xmetunirn 24241 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | |
| 11 | 9, 10 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 12 | eqid 2729 | . . . . . . . . . . 11 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 13 | 12 | mopnuni 24345 | . . . . . . . . . 10 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = ∪ (MetOpen‘𝐷)) |
| 14 | 11, 13 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → dom dom 𝐷 = ∪ (MetOpen‘𝐷)) |
| 15 | 2 | dmeqd 5852 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → dom 𝐷 = dom ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| 16 | dmres 5967 | . . . . . . . . . . . . . 14 ⊢ dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) | |
| 17 | 15, 16 | eqtrdi 2780 | . . . . . . . . . . . . 13 ⊢ (𝜑 → dom 𝐷 = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀))) |
| 18 | inss1 4190 | . . . . . . . . . . . . 13 ⊢ ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) ⊆ (𝑋 × 𝑋) | |
| 19 | 17, 18 | eqsstrdi 3982 | . . . . . . . . . . . 12 ⊢ (𝜑 → dom 𝐷 ⊆ (𝑋 × 𝑋)) |
| 20 | dmss 5849 | . . . . . . . . . . . 12 ⊢ (dom 𝐷 ⊆ (𝑋 × 𝑋) → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋)) | |
| 21 | 19, 20 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋)) |
| 22 | dmxpid 5876 | . . . . . . . . . . 11 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 23 | 21, 22 | sseqtrdi 3978 | . . . . . . . . . 10 ⊢ (𝜑 → dom dom 𝐷 ⊆ 𝑋) |
| 24 | 23 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → dom dom 𝐷 ⊆ 𝑋) |
| 25 | 14, 24 | eqsstrrd 3973 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → ∪ (MetOpen‘𝐷) ⊆ 𝑋) |
| 26 | sspwuni 5052 | . . . . . . . 8 ⊢ ((MetOpen‘𝐷) ⊆ 𝒫 𝑋 ↔ ∪ (MetOpen‘𝐷) ⊆ 𝑋) | |
| 27 | 25, 26 | sylibr 234 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
| 28 | 27 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐷 ∈ ∪ ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)) |
| 29 | 8, 28 | syl5 34 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)) |
| 30 | ndmfv 6859 | . . . . . 6 ⊢ (¬ 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅) | |
| 31 | 0ss 4353 | . . . . . 6 ⊢ ∅ ⊆ 𝒫 𝑋 | |
| 32 | 30, 31 | eqsstrdi 3982 | . . . . 5 ⊢ (¬ 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
| 33 | 29, 32 | pm2.61d1 180 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
| 34 | 1, 2, 3 | setsmsbas 24379 | . . . . 5 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| 35 | 34 | pweqd 4570 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 = 𝒫 (Base‘𝐾)) |
| 36 | 33, 5, 35 | 3sstr3d 3992 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾)) |
| 37 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 38 | eqid 2729 | . . . 4 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
| 39 | 37, 38 | topnid 17357 | . . 3 ⊢ ((TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾) → (TopSet‘𝐾) = (TopOpen‘𝐾)) |
| 40 | 36, 39 | syl 17 | . 2 ⊢ (𝜑 → (TopSet‘𝐾) = (TopOpen‘𝐾)) |
| 41 | 5, 40 | eqtrd 2764 | 1 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 〈cop 4585 ∪ cuni 4861 × cxp 5621 dom cdm 5623 ran crn 5624 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 sSet csts 17092 ndxcnx 17122 Basecbs 17138 TopSetcts 17185 distcds 17188 TopOpenctopn 17343 topGenctg 17359 ∞Metcxmet 21264 ballcbl 21266 MetOpencmopn 21269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-tset 17198 df-rest 17344 df-topn 17345 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-bl 21274 df-mopn 21275 df-top 22797 df-topon 22814 df-bases 22849 |
| This theorem is referenced by: setsxms 24383 tmslem 24386 |
| Copyright terms: Public domain | W3C validator |