| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsmstopn | Structured version Visualization version GIF version | ||
| Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
| setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
| setsms.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| setsmstopn | ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsms.x | . . 3 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
| 2 | setsms.d | . . 3 ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
| 3 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
| 4 | setsms.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | setsmstset 24390 | . 2 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
| 6 | df-mopn 21285 | . . . . . . . 8 ⊢ MetOpen = (𝑥 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑥))) | |
| 7 | 6 | dmmptss 6188 | . . . . . . 7 ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
| 8 | 7 | sseli 3930 | . . . . . 6 ⊢ (𝐷 ∈ dom MetOpen → 𝐷 ∈ ∪ ran ∞Met) |
| 9 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → 𝐷 ∈ ∪ ran ∞Met) | |
| 10 | xmetunirn 24250 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | |
| 11 | 9, 10 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 12 | eqid 2731 | . . . . . . . . . . 11 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 13 | 12 | mopnuni 24354 | . . . . . . . . . 10 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = ∪ (MetOpen‘𝐷)) |
| 14 | 11, 13 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → dom dom 𝐷 = ∪ (MetOpen‘𝐷)) |
| 15 | 2 | dmeqd 5845 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → dom 𝐷 = dom ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| 16 | dmres 5961 | . . . . . . . . . . . . . 14 ⊢ dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) | |
| 17 | 15, 16 | eqtrdi 2782 | . . . . . . . . . . . . 13 ⊢ (𝜑 → dom 𝐷 = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀))) |
| 18 | inss1 4187 | . . . . . . . . . . . . 13 ⊢ ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) ⊆ (𝑋 × 𝑋) | |
| 19 | 17, 18 | eqsstrdi 3979 | . . . . . . . . . . . 12 ⊢ (𝜑 → dom 𝐷 ⊆ (𝑋 × 𝑋)) |
| 20 | dmss 5842 | . . . . . . . . . . . 12 ⊢ (dom 𝐷 ⊆ (𝑋 × 𝑋) → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋)) | |
| 21 | 19, 20 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋)) |
| 22 | dmxpid 5870 | . . . . . . . . . . 11 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 23 | 21, 22 | sseqtrdi 3975 | . . . . . . . . . 10 ⊢ (𝜑 → dom dom 𝐷 ⊆ 𝑋) |
| 24 | 23 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → dom dom 𝐷 ⊆ 𝑋) |
| 25 | 14, 24 | eqsstrrd 3970 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → ∪ (MetOpen‘𝐷) ⊆ 𝑋) |
| 26 | sspwuni 5048 | . . . . . . . 8 ⊢ ((MetOpen‘𝐷) ⊆ 𝒫 𝑋 ↔ ∪ (MetOpen‘𝐷) ⊆ 𝑋) | |
| 27 | 25, 26 | sylibr 234 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
| 28 | 27 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐷 ∈ ∪ ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)) |
| 29 | 8, 28 | syl5 34 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)) |
| 30 | ndmfv 6854 | . . . . . 6 ⊢ (¬ 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅) | |
| 31 | 0ss 4350 | . . . . . 6 ⊢ ∅ ⊆ 𝒫 𝑋 | |
| 32 | 30, 31 | eqsstrdi 3979 | . . . . 5 ⊢ (¬ 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
| 33 | 29, 32 | pm2.61d1 180 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
| 34 | 1, 2, 3 | setsmsbas 24388 | . . . . 5 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| 35 | 34 | pweqd 4567 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 = 𝒫 (Base‘𝐾)) |
| 36 | 33, 5, 35 | 3sstr3d 3989 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾)) |
| 37 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 38 | eqid 2731 | . . . 4 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
| 39 | 37, 38 | topnid 17336 | . . 3 ⊢ ((TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾) → (TopSet‘𝐾) = (TopOpen‘𝐾)) |
| 40 | 36, 39 | syl 17 | . 2 ⊢ (𝜑 → (TopSet‘𝐾) = (TopOpen‘𝐾)) |
| 41 | 5, 40 | eqtrd 2766 | 1 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 〈cop 4582 ∪ cuni 4859 × cxp 5614 dom cdm 5616 ran crn 5617 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 sSet csts 17071 ndxcnx 17101 Basecbs 17117 TopSetcts 17164 distcds 17167 TopOpenctopn 17322 topGenctg 17338 ∞Metcxmet 21274 ballcbl 21276 MetOpencmopn 21279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-tset 17177 df-rest 17323 df-topn 17324 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-bl 21284 df-mopn 21285 df-top 22807 df-topon 22824 df-bases 22859 |
| This theorem is referenced by: setsxms 24392 tmslem 24395 |
| Copyright terms: Public domain | W3C validator |