MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsmstopn Structured version   Visualization version   GIF version

Theorem setsmstopn 23633
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsms.m (𝜑𝑀𝑉)
Assertion
Ref Expression
setsmstopn (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾))

Proof of Theorem setsmstopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 setsms.x . . 3 (𝜑𝑋 = (Base‘𝑀))
2 setsms.d . . 3 (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
4 setsms.m . . 3 (𝜑𝑀𝑉)
51, 2, 3, 4setsmstset 23632 . 2 (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾))
6 df-mopn 20593 . . . . . . . 8 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
76dmmptss 6144 . . . . . . 7 dom MetOpen ⊆ ran ∞Met
87sseli 3917 . . . . . 6 (𝐷 ∈ dom MetOpen → 𝐷 ran ∞Met)
9 simpr 485 . . . . . . . . . . 11 ((𝜑𝐷 ran ∞Met) → 𝐷 ran ∞Met)
10 xmetunirn 23490 . . . . . . . . . . 11 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
119, 10sylib 217 . . . . . . . . . 10 ((𝜑𝐷 ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
12 eqid 2738 . . . . . . . . . . 11 (MetOpen‘𝐷) = (MetOpen‘𝐷)
1312mopnuni 23594 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = (MetOpen‘𝐷))
1411, 13syl 17 . . . . . . . . 9 ((𝜑𝐷 ran ∞Met) → dom dom 𝐷 = (MetOpen‘𝐷))
152dmeqd 5814 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐷 = dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
16 dmres 5913 . . . . . . . . . . . . . 14 dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀))
1715, 16eqtrdi 2794 . . . . . . . . . . . . 13 (𝜑 → dom 𝐷 = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)))
18 inss1 4162 . . . . . . . . . . . . 13 ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) ⊆ (𝑋 × 𝑋)
1917, 18eqsstrdi 3975 . . . . . . . . . . . 12 (𝜑 → dom 𝐷 ⊆ (𝑋 × 𝑋))
20 dmss 5811 . . . . . . . . . . . 12 (dom 𝐷 ⊆ (𝑋 × 𝑋) → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋))
2119, 20syl 17 . . . . . . . . . . 11 (𝜑 → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋))
22 dmxpid 5839 . . . . . . . . . . 11 dom (𝑋 × 𝑋) = 𝑋
2321, 22sseqtrdi 3971 . . . . . . . . . 10 (𝜑 → dom dom 𝐷𝑋)
2423adantr 481 . . . . . . . . 9 ((𝜑𝐷 ran ∞Met) → dom dom 𝐷𝑋)
2514, 24eqsstrrd 3960 . . . . . . . 8 ((𝜑𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝑋)
26 sspwuni 5029 . . . . . . . 8 ((MetOpen‘𝐷) ⊆ 𝒫 𝑋 (MetOpen‘𝐷) ⊆ 𝑋)
2725, 26sylibr 233 . . . . . . 7 ((𝜑𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
2827ex 413 . . . . . 6 (𝜑 → (𝐷 ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 𝑋))
298, 28syl5 34 . . . . 5 (𝜑 → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋))
30 ndmfv 6804 . . . . . 6 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅)
31 0ss 4330 . . . . . 6 ∅ ⊆ 𝒫 𝑋
3230, 31eqsstrdi 3975 . . . . 5 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
3329, 32pm2.61d1 180 . . . 4 (𝜑 → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
341, 2, 3setsmsbas 23628 . . . . 5 (𝜑𝑋 = (Base‘𝐾))
3534pweqd 4552 . . . 4 (𝜑 → 𝒫 𝑋 = 𝒫 (Base‘𝐾))
3633, 5, 353sstr3d 3967 . . 3 (𝜑 → (TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾))
37 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
38 eqid 2738 . . . 4 (TopSet‘𝐾) = (TopSet‘𝐾)
3937, 38topnid 17146 . . 3 ((TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾) → (TopSet‘𝐾) = (TopOpen‘𝐾))
4036, 39syl 17 . 2 (𝜑 → (TopSet‘𝐾) = (TopOpen‘𝐾))
415, 40eqtrd 2778 1 (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  cop 4567   cuni 4839   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  cfv 6433  (class class class)co 7275   sSet csts 16864  ndxcnx 16894  Basecbs 16912  TopSetcts 16968  distcds 16971  TopOpenctopn 17132  topGenctg 17148  ∞Metcxmet 20582  ballcbl 20584  MetOpencmopn 20587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-tset 16981  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096
This theorem is referenced by:  setsxms  23634  tmslem  23637  tmslemOLD  23638
  Copyright terms: Public domain W3C validator