MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsmstopn Structured version   Visualization version   GIF version

Theorem setsmstopn 24382
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsms.m (𝜑𝑀𝑉)
Assertion
Ref Expression
setsmstopn (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾))

Proof of Theorem setsmstopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 setsms.x . . 3 (𝜑𝑋 = (Base‘𝑀))
2 setsms.d . . 3 (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
4 setsms.m . . 3 (𝜑𝑀𝑉)
51, 2, 3, 4setsmstset 24381 . 2 (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾))
6 df-mopn 21275 . . . . . . . 8 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
76dmmptss 6194 . . . . . . 7 dom MetOpen ⊆ ran ∞Met
87sseli 3933 . . . . . 6 (𝐷 ∈ dom MetOpen → 𝐷 ran ∞Met)
9 simpr 484 . . . . . . . . . . 11 ((𝜑𝐷 ran ∞Met) → 𝐷 ran ∞Met)
10 xmetunirn 24241 . . . . . . . . . . 11 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
119, 10sylib 218 . . . . . . . . . 10 ((𝜑𝐷 ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
12 eqid 2729 . . . . . . . . . . 11 (MetOpen‘𝐷) = (MetOpen‘𝐷)
1312mopnuni 24345 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = (MetOpen‘𝐷))
1411, 13syl 17 . . . . . . . . 9 ((𝜑𝐷 ran ∞Met) → dom dom 𝐷 = (MetOpen‘𝐷))
152dmeqd 5852 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐷 = dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
16 dmres 5967 . . . . . . . . . . . . . 14 dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀))
1715, 16eqtrdi 2780 . . . . . . . . . . . . 13 (𝜑 → dom 𝐷 = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)))
18 inss1 4190 . . . . . . . . . . . . 13 ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) ⊆ (𝑋 × 𝑋)
1917, 18eqsstrdi 3982 . . . . . . . . . . . 12 (𝜑 → dom 𝐷 ⊆ (𝑋 × 𝑋))
20 dmss 5849 . . . . . . . . . . . 12 (dom 𝐷 ⊆ (𝑋 × 𝑋) → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋))
2119, 20syl 17 . . . . . . . . . . 11 (𝜑 → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋))
22 dmxpid 5876 . . . . . . . . . . 11 dom (𝑋 × 𝑋) = 𝑋
2321, 22sseqtrdi 3978 . . . . . . . . . 10 (𝜑 → dom dom 𝐷𝑋)
2423adantr 480 . . . . . . . . 9 ((𝜑𝐷 ran ∞Met) → dom dom 𝐷𝑋)
2514, 24eqsstrrd 3973 . . . . . . . 8 ((𝜑𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝑋)
26 sspwuni 5052 . . . . . . . 8 ((MetOpen‘𝐷) ⊆ 𝒫 𝑋 (MetOpen‘𝐷) ⊆ 𝑋)
2725, 26sylibr 234 . . . . . . 7 ((𝜑𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
2827ex 412 . . . . . 6 (𝜑 → (𝐷 ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 𝑋))
298, 28syl5 34 . . . . 5 (𝜑 → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋))
30 ndmfv 6859 . . . . . 6 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅)
31 0ss 4353 . . . . . 6 ∅ ⊆ 𝒫 𝑋
3230, 31eqsstrdi 3982 . . . . 5 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
3329, 32pm2.61d1 180 . . . 4 (𝜑 → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
341, 2, 3setsmsbas 24379 . . . . 5 (𝜑𝑋 = (Base‘𝐾))
3534pweqd 4570 . . . 4 (𝜑 → 𝒫 𝑋 = 𝒫 (Base‘𝐾))
3633, 5, 353sstr3d 3992 . . 3 (𝜑 → (TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾))
37 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
38 eqid 2729 . . . 4 (TopSet‘𝐾) = (TopSet‘𝐾)
3937, 38topnid 17357 . . 3 ((TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾) → (TopSet‘𝐾) = (TopOpen‘𝐾))
4036, 39syl 17 . 2 (𝜑 → (TopSet‘𝐾) = (TopOpen‘𝐾))
415, 40eqtrd 2764 1 (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  cop 4585   cuni 4861   × cxp 5621  dom cdm 5623  ran crn 5624  cres 5625  cfv 6486  (class class class)co 7353   sSet csts 17092  ndxcnx 17122  Basecbs 17138  TopSetcts 17185  distcds 17188  TopOpenctopn 17343  topGenctg 17359  ∞Metcxmet 21264  ballcbl 21266  MetOpencmopn 21269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-tset 17198  df-rest 17344  df-topn 17345  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849
This theorem is referenced by:  setsxms  24383  tmslem  24386
  Copyright terms: Public domain W3C validator