Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > setsmstopn | Structured version Visualization version GIF version |
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
setsms.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
Ref | Expression |
---|---|
setsmstopn | ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsms.x | . . 3 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
2 | setsms.d | . . 3 ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
3 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
4 | setsms.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | setsmstset 23538 | . 2 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
6 | df-mopn 20506 | . . . . . . . 8 ⊢ MetOpen = (𝑥 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑥))) | |
7 | 6 | dmmptss 6133 | . . . . . . 7 ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
8 | 7 | sseli 3913 | . . . . . 6 ⊢ (𝐷 ∈ dom MetOpen → 𝐷 ∈ ∪ ran ∞Met) |
9 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → 𝐷 ∈ ∪ ran ∞Met) | |
10 | xmetunirn 23398 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | |
11 | 9, 10 | sylib 217 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
12 | eqid 2738 | . . . . . . . . . . 11 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
13 | 12 | mopnuni 23502 | . . . . . . . . . 10 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = ∪ (MetOpen‘𝐷)) |
14 | 11, 13 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → dom dom 𝐷 = ∪ (MetOpen‘𝐷)) |
15 | 2 | dmeqd 5803 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → dom 𝐷 = dom ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
16 | dmres 5902 | . . . . . . . . . . . . . 14 ⊢ dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) | |
17 | 15, 16 | eqtrdi 2795 | . . . . . . . . . . . . 13 ⊢ (𝜑 → dom 𝐷 = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀))) |
18 | inss1 4159 | . . . . . . . . . . . . 13 ⊢ ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) ⊆ (𝑋 × 𝑋) | |
19 | 17, 18 | eqsstrdi 3971 | . . . . . . . . . . . 12 ⊢ (𝜑 → dom 𝐷 ⊆ (𝑋 × 𝑋)) |
20 | dmss 5800 | . . . . . . . . . . . 12 ⊢ (dom 𝐷 ⊆ (𝑋 × 𝑋) → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋)) | |
21 | 19, 20 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋)) |
22 | dmxpid 5828 | . . . . . . . . . . 11 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
23 | 21, 22 | sseqtrdi 3967 | . . . . . . . . . 10 ⊢ (𝜑 → dom dom 𝐷 ⊆ 𝑋) |
24 | 23 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → dom dom 𝐷 ⊆ 𝑋) |
25 | 14, 24 | eqsstrrd 3956 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → ∪ (MetOpen‘𝐷) ⊆ 𝑋) |
26 | sspwuni 5025 | . . . . . . . 8 ⊢ ((MetOpen‘𝐷) ⊆ 𝒫 𝑋 ↔ ∪ (MetOpen‘𝐷) ⊆ 𝑋) | |
27 | 25, 26 | sylibr 233 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
28 | 27 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐷 ∈ ∪ ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)) |
29 | 8, 28 | syl5 34 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)) |
30 | ndmfv 6786 | . . . . . 6 ⊢ (¬ 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅) | |
31 | 0ss 4327 | . . . . . 6 ⊢ ∅ ⊆ 𝒫 𝑋 | |
32 | 30, 31 | eqsstrdi 3971 | . . . . 5 ⊢ (¬ 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
33 | 29, 32 | pm2.61d1 180 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
34 | 1, 2, 3 | setsmsbas 23536 | . . . . 5 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
35 | 34 | pweqd 4549 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 = 𝒫 (Base‘𝐾)) |
36 | 33, 5, 35 | 3sstr3d 3963 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾)) |
37 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
38 | eqid 2738 | . . . 4 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
39 | 37, 38 | topnid 17063 | . . 3 ⊢ ((TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾) → (TopSet‘𝐾) = (TopOpen‘𝐾)) |
40 | 36, 39 | syl 17 | . 2 ⊢ (𝜑 → (TopSet‘𝐾) = (TopOpen‘𝐾)) |
41 | 5, 40 | eqtrd 2778 | 1 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 〈cop 4564 ∪ cuni 4836 × cxp 5578 dom cdm 5580 ran crn 5581 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 sSet csts 16792 ndxcnx 16822 Basecbs 16840 TopSetcts 16894 distcds 16897 TopOpenctopn 17049 topGenctg 17065 ∞Metcxmet 20495 ballcbl 20497 MetOpencmopn 20500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-tset 16907 df-rest 17050 df-topn 17051 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-bases 22004 |
This theorem is referenced by: setsxms 23540 tmslem 23543 tmslemOLD 23544 |
Copyright terms: Public domain | W3C validator |