MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsmstopn Structured version   Visualization version   GIF version

Theorem setsmstopn 24511
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsms.m (𝜑𝑀𝑉)
Assertion
Ref Expression
setsmstopn (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾))

Proof of Theorem setsmstopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 setsms.x . . 3 (𝜑𝑋 = (Base‘𝑀))
2 setsms.d . . 3 (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
4 setsms.m . . 3 (𝜑𝑀𝑉)
51, 2, 3, 4setsmstset 24510 . 2 (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾))
6 df-mopn 21383 . . . . . . . 8 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
76dmmptss 6272 . . . . . . 7 dom MetOpen ⊆ ran ∞Met
87sseli 4004 . . . . . 6 (𝐷 ∈ dom MetOpen → 𝐷 ran ∞Met)
9 simpr 484 . . . . . . . . . . 11 ((𝜑𝐷 ran ∞Met) → 𝐷 ran ∞Met)
10 xmetunirn 24368 . . . . . . . . . . 11 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
119, 10sylib 218 . . . . . . . . . 10 ((𝜑𝐷 ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
12 eqid 2740 . . . . . . . . . . 11 (MetOpen‘𝐷) = (MetOpen‘𝐷)
1312mopnuni 24472 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = (MetOpen‘𝐷))
1411, 13syl 17 . . . . . . . . 9 ((𝜑𝐷 ran ∞Met) → dom dom 𝐷 = (MetOpen‘𝐷))
152dmeqd 5930 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐷 = dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
16 dmres 6041 . . . . . . . . . . . . . 14 dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀))
1715, 16eqtrdi 2796 . . . . . . . . . . . . 13 (𝜑 → dom 𝐷 = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)))
18 inss1 4258 . . . . . . . . . . . . 13 ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) ⊆ (𝑋 × 𝑋)
1917, 18eqsstrdi 4063 . . . . . . . . . . . 12 (𝜑 → dom 𝐷 ⊆ (𝑋 × 𝑋))
20 dmss 5927 . . . . . . . . . . . 12 (dom 𝐷 ⊆ (𝑋 × 𝑋) → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋))
2119, 20syl 17 . . . . . . . . . . 11 (𝜑 → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋))
22 dmxpid 5955 . . . . . . . . . . 11 dom (𝑋 × 𝑋) = 𝑋
2321, 22sseqtrdi 4059 . . . . . . . . . 10 (𝜑 → dom dom 𝐷𝑋)
2423adantr 480 . . . . . . . . 9 ((𝜑𝐷 ran ∞Met) → dom dom 𝐷𝑋)
2514, 24eqsstrrd 4048 . . . . . . . 8 ((𝜑𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝑋)
26 sspwuni 5123 . . . . . . . 8 ((MetOpen‘𝐷) ⊆ 𝒫 𝑋 (MetOpen‘𝐷) ⊆ 𝑋)
2725, 26sylibr 234 . . . . . . 7 ((𝜑𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
2827ex 412 . . . . . 6 (𝜑 → (𝐷 ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 𝑋))
298, 28syl5 34 . . . . 5 (𝜑 → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋))
30 ndmfv 6955 . . . . . 6 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅)
31 0ss 4423 . . . . . 6 ∅ ⊆ 𝒫 𝑋
3230, 31eqsstrdi 4063 . . . . 5 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
3329, 32pm2.61d1 180 . . . 4 (𝜑 → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
341, 2, 3setsmsbas 24506 . . . . 5 (𝜑𝑋 = (Base‘𝐾))
3534pweqd 4639 . . . 4 (𝜑 → 𝒫 𝑋 = 𝒫 (Base‘𝐾))
3633, 5, 353sstr3d 4055 . . 3 (𝜑 → (TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾))
37 eqid 2740 . . . 4 (Base‘𝐾) = (Base‘𝐾)
38 eqid 2740 . . . 4 (TopSet‘𝐾) = (TopSet‘𝐾)
3937, 38topnid 17495 . . 3 ((TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾) → (TopSet‘𝐾) = (TopOpen‘𝐾))
4036, 39syl 17 . 2 (𝜑 → (TopSet‘𝐾) = (TopOpen‘𝐾))
415, 40eqtrd 2780 1 (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  cop 4654   cuni 4931   × cxp 5698  dom cdm 5700  ran crn 5701  cres 5702  cfv 6573  (class class class)co 7448   sSet csts 17210  ndxcnx 17240  Basecbs 17258  TopSetcts 17317  distcds 17320  TopOpenctopn 17481  topGenctg 17497  ∞Metcxmet 21372  ballcbl 21374  MetOpencmopn 21377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-tset 17330  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974
This theorem is referenced by:  setsxms  24512  tmslem  24515  tmslemOLD  24516
  Copyright terms: Public domain W3C validator