| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsmstopn | Structured version Visualization version GIF version | ||
| Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
| setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
| setsms.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| setsmstopn | ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsms.x | . . 3 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
| 2 | setsms.d | . . 3 ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
| 3 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
| 4 | setsms.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | setsmstset 24416 | . 2 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
| 6 | df-mopn 21311 | . . . . . . . 8 ⊢ MetOpen = (𝑥 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑥))) | |
| 7 | 6 | dmmptss 6230 | . . . . . . 7 ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
| 8 | 7 | sseli 3954 | . . . . . 6 ⊢ (𝐷 ∈ dom MetOpen → 𝐷 ∈ ∪ ran ∞Met) |
| 9 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → 𝐷 ∈ ∪ ran ∞Met) | |
| 10 | xmetunirn 24276 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | |
| 11 | 9, 10 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 12 | eqid 2735 | . . . . . . . . . . 11 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 13 | 12 | mopnuni 24380 | . . . . . . . . . 10 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = ∪ (MetOpen‘𝐷)) |
| 14 | 11, 13 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → dom dom 𝐷 = ∪ (MetOpen‘𝐷)) |
| 15 | 2 | dmeqd 5885 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → dom 𝐷 = dom ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| 16 | dmres 5999 | . . . . . . . . . . . . . 14 ⊢ dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) | |
| 17 | 15, 16 | eqtrdi 2786 | . . . . . . . . . . . . 13 ⊢ (𝜑 → dom 𝐷 = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀))) |
| 18 | inss1 4212 | . . . . . . . . . . . . 13 ⊢ ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) ⊆ (𝑋 × 𝑋) | |
| 19 | 17, 18 | eqsstrdi 4003 | . . . . . . . . . . . 12 ⊢ (𝜑 → dom 𝐷 ⊆ (𝑋 × 𝑋)) |
| 20 | dmss 5882 | . . . . . . . . . . . 12 ⊢ (dom 𝐷 ⊆ (𝑋 × 𝑋) → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋)) | |
| 21 | 19, 20 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋)) |
| 22 | dmxpid 5910 | . . . . . . . . . . 11 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 23 | 21, 22 | sseqtrdi 3999 | . . . . . . . . . 10 ⊢ (𝜑 → dom dom 𝐷 ⊆ 𝑋) |
| 24 | 23 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → dom dom 𝐷 ⊆ 𝑋) |
| 25 | 14, 24 | eqsstrrd 3994 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → ∪ (MetOpen‘𝐷) ⊆ 𝑋) |
| 26 | sspwuni 5076 | . . . . . . . 8 ⊢ ((MetOpen‘𝐷) ⊆ 𝒫 𝑋 ↔ ∪ (MetOpen‘𝐷) ⊆ 𝑋) | |
| 27 | 25, 26 | sylibr 234 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
| 28 | 27 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐷 ∈ ∪ ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)) |
| 29 | 8, 28 | syl5 34 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)) |
| 30 | ndmfv 6911 | . . . . . 6 ⊢ (¬ 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅) | |
| 31 | 0ss 4375 | . . . . . 6 ⊢ ∅ ⊆ 𝒫 𝑋 | |
| 32 | 30, 31 | eqsstrdi 4003 | . . . . 5 ⊢ (¬ 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
| 33 | 29, 32 | pm2.61d1 180 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
| 34 | 1, 2, 3 | setsmsbas 24414 | . . . . 5 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| 35 | 34 | pweqd 4592 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 = 𝒫 (Base‘𝐾)) |
| 36 | 33, 5, 35 | 3sstr3d 4013 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾)) |
| 37 | eqid 2735 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 38 | eqid 2735 | . . . 4 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
| 39 | 37, 38 | topnid 17449 | . . 3 ⊢ ((TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾) → (TopSet‘𝐾) = (TopOpen‘𝐾)) |
| 40 | 36, 39 | syl 17 | . 2 ⊢ (𝜑 → (TopSet‘𝐾) = (TopOpen‘𝐾)) |
| 41 | 5, 40 | eqtrd 2770 | 1 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 〈cop 4607 ∪ cuni 4883 × cxp 5652 dom cdm 5654 ran crn 5655 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 sSet csts 17182 ndxcnx 17212 Basecbs 17228 TopSetcts 17277 distcds 17280 TopOpenctopn 17435 topGenctg 17451 ∞Metcxmet 21300 ballcbl 21302 MetOpencmopn 21305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-tset 17290 df-rest 17436 df-topn 17437 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 |
| This theorem is referenced by: setsxms 24418 tmslem 24421 |
| Copyright terms: Public domain | W3C validator |