MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsmstopn Structured version   Visualization version   GIF version

Theorem setsmstopn 23003
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsms.m (𝜑𝑀𝑉)
Assertion
Ref Expression
setsmstopn (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾))

Proof of Theorem setsmstopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 setsms.x . . 3 (𝜑𝑋 = (Base‘𝑀))
2 setsms.d . . 3 (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
4 setsms.m . . 3 (𝜑𝑀𝑉)
51, 2, 3, 4setsmstset 23002 . 2 (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾))
6 df-mopn 20457 . . . . . . . 8 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
76dmmptss 6092 . . . . . . 7 dom MetOpen ⊆ ran ∞Met
87sseli 3966 . . . . . 6 (𝐷 ∈ dom MetOpen → 𝐷 ran ∞Met)
9 simpr 485 . . . . . . . . . . 11 ((𝜑𝐷 ran ∞Met) → 𝐷 ran ∞Met)
10 xmetunirn 22862 . . . . . . . . . . 11 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
119, 10sylib 219 . . . . . . . . . 10 ((𝜑𝐷 ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
12 eqid 2825 . . . . . . . . . . 11 (MetOpen‘𝐷) = (MetOpen‘𝐷)
1312mopnuni 22966 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = (MetOpen‘𝐷))
1411, 13syl 17 . . . . . . . . 9 ((𝜑𝐷 ran ∞Met) → dom dom 𝐷 = (MetOpen‘𝐷))
152dmeqd 5772 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐷 = dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
16 dmres 5873 . . . . . . . . . . . . . 14 dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀))
1715, 16syl6eq 2876 . . . . . . . . . . . . 13 (𝜑 → dom 𝐷 = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)))
18 inss1 4208 . . . . . . . . . . . . 13 ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) ⊆ (𝑋 × 𝑋)
1917, 18eqsstrdi 4024 . . . . . . . . . . . 12 (𝜑 → dom 𝐷 ⊆ (𝑋 × 𝑋))
20 dmss 5769 . . . . . . . . . . . 12 (dom 𝐷 ⊆ (𝑋 × 𝑋) → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋))
2119, 20syl 17 . . . . . . . . . . 11 (𝜑 → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋))
22 dmxpid 5798 . . . . . . . . . . 11 dom (𝑋 × 𝑋) = 𝑋
2321, 22syl6sseq 4020 . . . . . . . . . 10 (𝜑 → dom dom 𝐷𝑋)
2423adantr 481 . . . . . . . . 9 ((𝜑𝐷 ran ∞Met) → dom dom 𝐷𝑋)
2514, 24eqsstrrd 4009 . . . . . . . 8 ((𝜑𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝑋)
26 sspwuni 5018 . . . . . . . 8 ((MetOpen‘𝐷) ⊆ 𝒫 𝑋 (MetOpen‘𝐷) ⊆ 𝑋)
2725, 26sylibr 235 . . . . . . 7 ((𝜑𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
2827ex 413 . . . . . 6 (𝜑 → (𝐷 ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 𝑋))
298, 28syl5 34 . . . . 5 (𝜑 → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋))
30 ndmfv 6696 . . . . . 6 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅)
31 0ss 4353 . . . . . 6 ∅ ⊆ 𝒫 𝑋
3230, 31eqsstrdi 4024 . . . . 5 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
3329, 32pm2.61d1 181 . . . 4 (𝜑 → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
341, 2, 3setsmsbas 23000 . . . . 5 (𝜑𝑋 = (Base‘𝐾))
3534pweqd 4546 . . . 4 (𝜑 → 𝒫 𝑋 = 𝒫 (Base‘𝐾))
3633, 5, 353sstr3d 4016 . . 3 (𝜑 → (TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾))
37 eqid 2825 . . . 4 (Base‘𝐾) = (Base‘𝐾)
38 eqid 2825 . . . 4 (TopSet‘𝐾) = (TopSet‘𝐾)
3937, 38topnid 16701 . . 3 ((TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾) → (TopSet‘𝐾) = (TopOpen‘𝐾))
4036, 39syl 17 . 2 (𝜑 → (TopSet‘𝐾) = (TopOpen‘𝐾))
415, 40eqtrd 2860 1 (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1530  wcel 2107  cin 3938  wss 3939  c0 4294  𝒫 cpw 4541  cop 4569   cuni 4836   × cxp 5551  dom cdm 5553  ran crn 5554  cres 5555  cfv 6351  (class class class)co 7151  ndxcnx 16472   sSet csts 16473  Basecbs 16475  TopSetcts 16563  distcds 16566  TopOpenctopn 16687  topGenctg 16703  ∞Metcxmet 20446  ballcbl 20448  MetOpencmopn 20451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-tset 16576  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20453  df-xmet 20454  df-bl 20456  df-mopn 20457  df-top 21418  df-topon 21435  df-bases 21470
This theorem is referenced by:  setsxms  23004  tmslem  23007
  Copyright terms: Public domain W3C validator