MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmopn Structured version   Visualization version   GIF version

Theorem elmopn 23605
Description: The defining property of an open set of a metric space. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
elmopn (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ran (ball‘𝐷)(𝑥𝑦𝑦𝐴))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem elmopn
StepHypRef Expression
1 mopnval.1 . . . 4 𝐽 = (MetOpen‘𝐷)
21mopnval 23601 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))
32eleq2d 2824 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽𝐴 ∈ (topGen‘ran (ball‘𝐷))))
4 blbas 23593 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)
5 eltg2 22118 . . 3 (ran (ball‘𝐷) ∈ TopBases → (𝐴 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝐴 ran (ball‘𝐷) ∧ ∀𝑥𝐴𝑦 ∈ ran (ball‘𝐷)(𝑥𝑦𝑦𝐴))))
64, 5syl 17 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝐴 ran (ball‘𝐷) ∧ ∀𝑥𝐴𝑦 ∈ ran (ball‘𝐷)(𝑥𝑦𝑦𝐴))))
7 unirnbl 23583 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
87sseq2d 3952 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ran (ball‘𝐷) ↔ 𝐴𝑋))
98anbi1d 630 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐴 ran (ball‘𝐷) ∧ ∀𝑥𝐴𝑦 ∈ ran (ball‘𝐷)(𝑥𝑦𝑦𝐴)) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ran (ball‘𝐷)(𝑥𝑦𝑦𝐴))))
103, 6, 93bitrd 305 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ran (ball‘𝐷)(𝑥𝑦𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3886   cuni 4839  ran crn 5585  cfv 6426  topGenctg 17158  ∞Metcxmet 20592  ballcbl 20594  MetOpencmopn 20597  TopBasesctb 22105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-er 8485  df-map 8604  df-en 8721  df-dom 8722  df-sdom 8723  df-sup 9188  df-inf 9189  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-n0 12244  df-z 12330  df-uz 12593  df-q 12699  df-rp 12741  df-xneg 12858  df-xadd 12859  df-xmul 12860  df-topgen 17164  df-psmet 20599  df-xmet 20600  df-bl 20602  df-mopn 20603  df-bases 22106
This theorem is referenced by:  elmopn2  23608  mopni  23658  blcld  23671  dscopn  23739
  Copyright terms: Public domain W3C validator