Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isxms2 | Structured version Visualization version GIF version |
Description: Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
isms.x | ⊢ 𝑋 = (Base‘𝐾) |
isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
isxms2 | ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
4 | 1, 2, 3 | isxms 23212 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
5 | 2, 1 | istps 21697 | . . . 4 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
6 | df-mopn 20225 | . . . . . . . . . 10 ⊢ MetOpen = (𝑥 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑥))) | |
7 | 6 | dmmptss 6083 | . . . . . . . . 9 ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
8 | toponmax 21689 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
9 | 8 | adantl 485 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ 𝐽) |
10 | simpl 486 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 = (MetOpen‘𝐷)) | |
11 | 9, 10 | eleqtrd 2836 | . . . . . . . . . 10 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ (MetOpen‘𝐷)) |
12 | elfvdm 6718 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (MetOpen‘𝐷) → 𝐷 ∈ dom MetOpen) | |
13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ dom MetOpen) |
14 | 7, 13 | sseldi 3885 | . . . . . . . 8 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ ∪ ran ∞Met) |
15 | xmetunirn 23102 | . . . . . . . 8 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | |
16 | 14, 15 | sylib 221 | . . . . . . 7 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
17 | eqid 2739 | . . . . . . . . . . . . 13 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
18 | 17 | mopntopon 23204 | . . . . . . . . . . . 12 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷)) |
19 | 16, 18 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷)) |
20 | 10, 19 | eqeltrd 2834 | . . . . . . . . . 10 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘dom dom 𝐷)) |
21 | toponuni 21677 | . . . . . . . . . 10 ⊢ (𝐽 ∈ (TopOn‘dom dom 𝐷) → dom dom 𝐷 = ∪ 𝐽) | |
22 | 20, 21 | syl 17 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = ∪ 𝐽) |
23 | toponuni 21677 | . . . . . . . . . 10 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
24 | 23 | adantl 485 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 = ∪ 𝐽) |
25 | 22, 24 | eqtr4d 2777 | . . . . . . . 8 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = 𝑋) |
26 | 25 | fveq2d 6690 | . . . . . . 7 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∞Met‘dom dom 𝐷) = (∞Met‘𝑋)) |
27 | 16, 26 | eleqtrd 2836 | . . . . . 6 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋)) |
28 | 27 | ex 416 | . . . . 5 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))) |
29 | 17 | mopntopon 23204 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ (TopOn‘𝑋)) |
30 | eleq1 2821 | . . . . . 6 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ (MetOpen‘𝐷) ∈ (TopOn‘𝑋))) | |
31 | 29, 30 | syl5ibr 249 | . . . . 5 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))) |
32 | 28, 31 | impbid 215 | . . . 4 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐷 ∈ (∞Met‘𝑋))) |
33 | 5, 32 | syl5bb 286 | . . 3 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐾 ∈ TopSp ↔ 𝐷 ∈ (∞Met‘𝑋))) |
34 | 33 | pm5.32ri 579 | . 2 ⊢ ((𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
35 | 4, 34 | bitri 278 | 1 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∪ cuni 4806 × cxp 5533 dom cdm 5535 ran crn 5536 ↾ cres 5537 ‘cfv 6349 Basecbs 16598 distcds 16689 TopOpenctopn 16810 topGenctg 16826 ∞Metcxmet 20214 ballcbl 20216 MetOpencmopn 20219 TopOnctopon 21673 TopSpctps 21695 ∞MetSpcxms 23082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 ax-pre-sup 10705 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-1st 7726 df-2nd 7727 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-er 8332 df-map 8451 df-en 8568 df-dom 8569 df-sdom 8570 df-sup 8991 df-inf 8992 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-div 11388 df-nn 11729 df-2 11791 df-n0 11989 df-z 12075 df-uz 12337 df-q 12443 df-rp 12485 df-xneg 12602 df-xadd 12603 df-xmul 12604 df-topgen 16832 df-psmet 20221 df-xmet 20222 df-bl 20224 df-mopn 20225 df-top 21657 df-topon 21674 df-topsp 21696 df-bases 21709 df-xms 23085 |
This theorem is referenced by: isms2 23215 xmsxmet 23221 setsxms 23244 tmsxms 23251 imasf1oxms 23254 ressxms 23290 prdsxms 23295 |
Copyright terms: Public domain | W3C validator |