| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isxms2 | Structured version Visualization version GIF version | ||
| Description: Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| isms.x | ⊢ 𝑋 = (Base‘𝐾) |
| isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| isxms2 | ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
| 3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
| 4 | 1, 2, 3 | isxms 24391 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
| 5 | 2, 1 | istps 22877 | . . . 4 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 6 | df-mopn 21316 | . . . . . . . . . 10 ⊢ MetOpen = (𝑥 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑥))) | |
| 7 | 6 | dmmptss 6235 | . . . . . . . . 9 ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
| 8 | toponmax 22869 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 9 | 8 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ 𝐽) |
| 10 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 = (MetOpen‘𝐷)) | |
| 11 | 9, 10 | eleqtrd 2837 | . . . . . . . . . 10 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ (MetOpen‘𝐷)) |
| 12 | elfvdm 6918 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (MetOpen‘𝐷) → 𝐷 ∈ dom MetOpen) | |
| 13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ dom MetOpen) |
| 14 | 7, 13 | sselid 3961 | . . . . . . . 8 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ ∪ ran ∞Met) |
| 15 | xmetunirn 24281 | . . . . . . . 8 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | |
| 16 | 14, 15 | sylib 218 | . . . . . . 7 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 17 | eqid 2736 | . . . . . . . . . . . . 13 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 18 | 17 | mopntopon 24383 | . . . . . . . . . . . 12 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷)) |
| 19 | 16, 18 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷)) |
| 20 | 10, 19 | eqeltrd 2835 | . . . . . . . . . 10 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘dom dom 𝐷)) |
| 21 | toponuni 22857 | . . . . . . . . . 10 ⊢ (𝐽 ∈ (TopOn‘dom dom 𝐷) → dom dom 𝐷 = ∪ 𝐽) | |
| 22 | 20, 21 | syl 17 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = ∪ 𝐽) |
| 23 | toponuni 22857 | . . . . . . . . . 10 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 24 | 23 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 = ∪ 𝐽) |
| 25 | 22, 24 | eqtr4d 2774 | . . . . . . . 8 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = 𝑋) |
| 26 | 25 | fveq2d 6885 | . . . . . . 7 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∞Met‘dom dom 𝐷) = (∞Met‘𝑋)) |
| 27 | 16, 26 | eleqtrd 2837 | . . . . . 6 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 28 | 27 | ex 412 | . . . . 5 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))) |
| 29 | 17 | mopntopon 24383 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ (TopOn‘𝑋)) |
| 30 | eleq1 2823 | . . . . . 6 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ (MetOpen‘𝐷) ∈ (TopOn‘𝑋))) | |
| 31 | 29, 30 | imbitrrid 246 | . . . . 5 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))) |
| 32 | 28, 31 | impbid 212 | . . . 4 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐷 ∈ (∞Met‘𝑋))) |
| 33 | 5, 32 | bitrid 283 | . . 3 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐾 ∈ TopSp ↔ 𝐷 ∈ (∞Met‘𝑋))) |
| 34 | 33 | pm5.32ri 575 | . 2 ⊢ ((𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
| 35 | 4, 34 | bitri 275 | 1 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4888 × cxp 5657 dom cdm 5659 ran crn 5660 ↾ cres 5661 ‘cfv 6536 Basecbs 17233 distcds 17285 TopOpenctopn 17440 topGenctg 17456 ∞Metcxmet 21305 ballcbl 21307 MetOpencmopn 21310 TopOnctopon 22853 TopSpctps 22875 ∞MetSpcxms 24261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-bl 21315 df-mopn 21316 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-xms 24264 |
| This theorem is referenced by: isms2 24394 xmsxmet 24400 setsxms 24423 tmsxms 24430 imasf1oxms 24433 ressxms 24469 prdsxms 24474 |
| Copyright terms: Public domain | W3C validator |