![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isxms2 | Structured version Visualization version GIF version |
Description: Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
isms.x | ⊢ 𝑋 = (Base‘𝐾) |
isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
isxms2 | ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
4 | 1, 2, 3 | isxms 22763 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
5 | 2, 1 | istps 21249 | . . . 4 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
6 | df-mopn 20246 | . . . . . . . . . 10 ⊢ MetOpen = (𝑥 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑥))) | |
7 | 6 | dmmptss 5936 | . . . . . . . . 9 ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
8 | toponmax 21241 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
9 | 8 | adantl 474 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ 𝐽) |
10 | simpl 475 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 = (MetOpen‘𝐷)) | |
11 | 9, 10 | eleqtrd 2868 | . . . . . . . . . 10 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ (MetOpen‘𝐷)) |
12 | elfvdm 6533 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (MetOpen‘𝐷) → 𝐷 ∈ dom MetOpen) | |
13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ dom MetOpen) |
14 | 7, 13 | sseldi 3858 | . . . . . . . 8 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ ∪ ran ∞Met) |
15 | xmetunirn 22653 | . . . . . . . 8 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | |
16 | 14, 15 | sylib 210 | . . . . . . 7 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
17 | eqid 2778 | . . . . . . . . . . . . 13 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
18 | 17 | mopntopon 22755 | . . . . . . . . . . . 12 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷)) |
19 | 16, 18 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷)) |
20 | 10, 19 | eqeltrd 2866 | . . . . . . . . . 10 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘dom dom 𝐷)) |
21 | toponuni 21229 | . . . . . . . . . 10 ⊢ (𝐽 ∈ (TopOn‘dom dom 𝐷) → dom dom 𝐷 = ∪ 𝐽) | |
22 | 20, 21 | syl 17 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = ∪ 𝐽) |
23 | toponuni 21229 | . . . . . . . . . 10 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
24 | 23 | adantl 474 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 = ∪ 𝐽) |
25 | 22, 24 | eqtr4d 2817 | . . . . . . . 8 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = 𝑋) |
26 | 25 | fveq2d 6505 | . . . . . . 7 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∞Met‘dom dom 𝐷) = (∞Met‘𝑋)) |
27 | 16, 26 | eleqtrd 2868 | . . . . . 6 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋)) |
28 | 27 | ex 405 | . . . . 5 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))) |
29 | 17 | mopntopon 22755 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ (TopOn‘𝑋)) |
30 | eleq1 2853 | . . . . . 6 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ (MetOpen‘𝐷) ∈ (TopOn‘𝑋))) | |
31 | 29, 30 | syl5ibr 238 | . . . . 5 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))) |
32 | 28, 31 | impbid 204 | . . . 4 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐷 ∈ (∞Met‘𝑋))) |
33 | 5, 32 | syl5bb 275 | . . 3 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐾 ∈ TopSp ↔ 𝐷 ∈ (∞Met‘𝑋))) |
34 | 33 | pm5.32ri 568 | . 2 ⊢ ((𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
35 | 4, 34 | bitri 267 | 1 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∪ cuni 4713 × cxp 5406 dom cdm 5408 ran crn 5409 ↾ cres 5410 ‘cfv 6190 Basecbs 16342 distcds 16433 TopOpenctopn 16554 topGenctg 16570 ∞Metcxmet 20235 ballcbl 20237 MetOpencmopn 20240 TopOnctopon 21225 TopSpctps 21247 ∞MetSpcxms 22633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 ax-pre-sup 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-1st 7503 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-map 8210 df-en 8309 df-dom 8310 df-sdom 8311 df-sup 8703 df-inf 8704 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-div 11101 df-nn 11442 df-2 11506 df-n0 11711 df-z 11797 df-uz 12062 df-q 12166 df-rp 12208 df-xneg 12327 df-xadd 12328 df-xmul 12329 df-topgen 16576 df-psmet 20242 df-xmet 20243 df-bl 20245 df-mopn 20246 df-top 21209 df-topon 21226 df-topsp 21248 df-bases 21261 df-xms 22636 |
This theorem is referenced by: isms2 22766 xmsxmet 22772 setsxms 22795 tmsxms 22802 imasf1oxms 22805 ressxms 22841 prdsxms 22846 |
Copyright terms: Public domain | W3C validator |