MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxms2 Structured version   Visualization version   GIF version

Theorem isxms2 24352
Description: Express the predicate "𝑋, 𝐷 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpen‘𝐾)
isms.x 𝑋 = (Base‘𝐾)
isms.d 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isxms2 (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))

Proof of Theorem isxms2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isms.j . . 3 𝐽 = (TopOpen‘𝐾)
2 isms.x . . 3 𝑋 = (Base‘𝐾)
3 isms.d . . 3 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
41, 2, 3isxms 24351 . 2 (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))
52, 1istps 22837 . . . 4 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
6 df-mopn 21275 . . . . . . . . . 10 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
76dmmptss 6194 . . . . . . . . 9 dom MetOpen ⊆ ran ∞Met
8 toponmax 22829 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
98adantl 481 . . . . . . . . . . 11 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋𝐽)
10 simpl 482 . . . . . . . . . . 11 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 = (MetOpen‘𝐷))
119, 10eleqtrd 2830 . . . . . . . . . 10 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ (MetOpen‘𝐷))
12 elfvdm 6861 . . . . . . . . . 10 (𝑋 ∈ (MetOpen‘𝐷) → 𝐷 ∈ dom MetOpen)
1311, 12syl 17 . . . . . . . . 9 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ dom MetOpen)
147, 13sselid 3935 . . . . . . . 8 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ran ∞Met)
15 xmetunirn 24241 . . . . . . . 8 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
1614, 15sylib 218 . . . . . . 7 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
17 eqid 2729 . . . . . . . . . . . . 13 (MetOpen‘𝐷) = (MetOpen‘𝐷)
1817mopntopon 24343 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷))
1916, 18syl 17 . . . . . . . . . . 11 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷))
2010, 19eqeltrd 2828 . . . . . . . . . 10 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘dom dom 𝐷))
21 toponuni 22817 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘dom dom 𝐷) → dom dom 𝐷 = 𝐽)
2220, 21syl 17 . . . . . . . . 9 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = 𝐽)
23 toponuni 22817 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2423adantl 481 . . . . . . . . 9 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 = 𝐽)
2522, 24eqtr4d 2767 . . . . . . . 8 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = 𝑋)
2625fveq2d 6830 . . . . . . 7 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∞Met‘dom dom 𝐷) = (∞Met‘𝑋))
2716, 26eleqtrd 2830 . . . . . 6 ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
2827ex 412 . . . . 5 (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)))
2917mopntopon 24343 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ (TopOn‘𝑋))
30 eleq1 2816 . . . . . 6 (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ (MetOpen‘𝐷) ∈ (TopOn‘𝑋)))
3129, 30imbitrrid 246 . . . . 5 (𝐽 = (MetOpen‘𝐷) → (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)))
3228, 31impbid 212 . . . 4 (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐷 ∈ (∞Met‘𝑋)))
335, 32bitrid 283 . . 3 (𝐽 = (MetOpen‘𝐷) → (𝐾 ∈ TopSp ↔ 𝐷 ∈ (∞Met‘𝑋)))
3433pm5.32ri 575 . 2 ((𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))
354, 34bitri 275 1 (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109   cuni 4861   × cxp 5621  dom cdm 5623  ran crn 5624  cres 5625  cfv 6486  Basecbs 17138  distcds 17188  TopOpenctopn 17343  topGenctg 17359  ∞Metcxmet 21264  ballcbl 21266  MetOpencmopn 21269  TopOnctopon 22813  TopSpctps 22835  ∞MetSpcxms 24221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-xms 24224
This theorem is referenced by:  isms2  24354  xmsxmet  24360  setsxms  24383  tmsxms  24390  imasf1oxms  24393  ressxms  24429  prdsxms  24434
  Copyright terms: Public domain W3C validator