| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mopnval | Structured version Visualization version GIF version | ||
| Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object (MetOpen‘𝐷) is the family of all open sets in the metric space determined by the metric 𝐷. By mopntop 24345, the open sets of a metric space form a topology 𝐽, whose base set is ∪ 𝐽 by mopnuni 24346. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
| Ref | Expression |
|---|---|
| mopnval.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| mopnval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn 6857 | . . 3 ⊢ (∞Met‘𝑋) ⊆ ∪ ran ∞Met | |
| 2 | 1 | sseli 3933 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ∪ ran ∞Met) |
| 3 | mopnval.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 4 | fveq2 6826 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (ball‘𝑑) = (ball‘𝐷)) | |
| 5 | 4 | rneqd 5884 | . . . . 5 ⊢ (𝑑 = 𝐷 → ran (ball‘𝑑) = ran (ball‘𝐷)) |
| 6 | 5 | fveq2d 6830 | . . . 4 ⊢ (𝑑 = 𝐷 → (topGen‘ran (ball‘𝑑)) = (topGen‘ran (ball‘𝐷))) |
| 7 | df-mopn 21276 | . . . 4 ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | |
| 8 | fvex 6839 | . . . 4 ⊢ (topGen‘ran (ball‘𝐷)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6934 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷))) |
| 10 | 3, 9 | eqtrid 2776 | . 2 ⊢ (𝐷 ∈ ∪ ran ∞Met → 𝐽 = (topGen‘ran (ball‘𝐷))) |
| 11 | 2, 10 | syl 17 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4861 ran crn 5624 ‘cfv 6486 topGenctg 17360 ∞Metcxmet 21265 ballcbl 21267 MetOpencmopn 21270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fv 6494 df-mopn 21276 |
| This theorem is referenced by: mopntopon 24344 elmopn 24347 imasf1oxms 24394 blssopn 24400 metss 24413 prdsxmslem2 24434 metcnp3 24445 xmetutop 24473 tgioo 24701 ismtyhmeolem 37803 |
| Copyright terms: Public domain | W3C validator |