MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnval Structured version   Visualization version   GIF version

Theorem mopnval 23051
Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object (MetOpen‘𝐷) is the family of all open sets in the metric space determined by the metric 𝐷. By mopntop 23053, the open sets of a metric space form a topology 𝐽, whose base set is 𝐽 by mopnuni 23054. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopnval (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))

Proof of Theorem mopnval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6702 . . 3 (∞Met‘𝑋) ⊆ ran ∞Met
21sseli 3966 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
3 mopnval.1 . . 3 𝐽 = (MetOpen‘𝐷)
4 fveq2 6673 . . . . . 6 (𝑑 = 𝐷 → (ball‘𝑑) = (ball‘𝐷))
54rneqd 5811 . . . . 5 (𝑑 = 𝐷 → ran (ball‘𝑑) = ran (ball‘𝐷))
65fveq2d 6677 . . . 4 (𝑑 = 𝐷 → (topGen‘ran (ball‘𝑑)) = (topGen‘ran (ball‘𝐷)))
7 df-mopn 20544 . . . 4 MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
8 fvex 6686 . . . 4 (topGen‘ran (ball‘𝐷)) ∈ V
96, 7, 8fvmpt 6771 . . 3 (𝐷 ran ∞Met → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
103, 9syl5eq 2871 . 2 (𝐷 ran ∞Met → 𝐽 = (topGen‘ran (ball‘𝐷)))
112, 10syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113   cuni 4841  ran crn 5559  cfv 6358  topGenctg 16714  ∞Metcxmet 20533  ballcbl 20535  MetOpencmopn 20538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fv 6366  df-mopn 20544
This theorem is referenced by:  mopntopon  23052  elmopn  23055  imasf1oxms  23102  blssopn  23108  metss  23121  prdsxmslem2  23142  metcnp3  23153  xmetutop  23181  tgioo  23407  ismtyhmeolem  35086
  Copyright terms: Public domain W3C validator