| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mopnval | Structured version Visualization version GIF version | ||
| Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object (MetOpen‘𝐷) is the family of all open sets in the metric space determined by the metric 𝐷. By mopntop 24375, the open sets of a metric space form a topology 𝐽, whose base set is ∪ 𝐽 by mopnuni 24376. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
| Ref | Expression |
|---|---|
| mopnval.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| mopnval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn 6862 | . . 3 ⊢ (∞Met‘𝑋) ⊆ ∪ ran ∞Met | |
| 2 | 1 | sseli 3926 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ∪ ran ∞Met) |
| 3 | mopnval.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 4 | fveq2 6831 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (ball‘𝑑) = (ball‘𝐷)) | |
| 5 | 4 | rneqd 5884 | . . . . 5 ⊢ (𝑑 = 𝐷 → ran (ball‘𝑑) = ran (ball‘𝐷)) |
| 6 | 5 | fveq2d 6835 | . . . 4 ⊢ (𝑑 = 𝐷 → (topGen‘ran (ball‘𝑑)) = (topGen‘ran (ball‘𝐷))) |
| 7 | df-mopn 21296 | . . . 4 ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | |
| 8 | fvex 6844 | . . . 4 ⊢ (topGen‘ran (ball‘𝐷)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6938 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷))) |
| 10 | 3, 9 | eqtrid 2780 | . 2 ⊢ (𝐷 ∈ ∪ ran ∞Met → 𝐽 = (topGen‘ran (ball‘𝐷))) |
| 11 | 2, 10 | syl 17 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∪ cuni 4860 ran crn 5622 ‘cfv 6489 topGenctg 17348 ∞Metcxmet 21285 ballcbl 21287 MetOpencmopn 21290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fv 6497 df-mopn 21296 |
| This theorem is referenced by: mopntopon 24374 elmopn 24377 imasf1oxms 24424 blssopn 24430 metss 24443 prdsxmslem2 24464 metcnp3 24475 xmetutop 24503 tgioo 24731 ismtyhmeolem 37917 |
| Copyright terms: Public domain | W3C validator |