![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mopnval | Structured version Visualization version GIF version |
Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object (MetOpen‘𝐷) is the family of all open sets in the metric space determined by the metric 𝐷. By mopntop 24390, the open sets of a metric space form a topology 𝐽, whose base set is ∪ 𝐽 by mopnuni 24391. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
mopnval.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
mopnval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvssunirn 6929 | . . 3 ⊢ (∞Met‘𝑋) ⊆ ∪ ran ∞Met | |
2 | 1 | sseli 3972 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ∪ ran ∞Met) |
3 | mopnval.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
4 | fveq2 6896 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (ball‘𝑑) = (ball‘𝐷)) | |
5 | 4 | rneqd 5940 | . . . . 5 ⊢ (𝑑 = 𝐷 → ran (ball‘𝑑) = ran (ball‘𝐷)) |
6 | 5 | fveq2d 6900 | . . . 4 ⊢ (𝑑 = 𝐷 → (topGen‘ran (ball‘𝑑)) = (topGen‘ran (ball‘𝐷))) |
7 | df-mopn 21292 | . . . 4 ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | |
8 | fvex 6909 | . . . 4 ⊢ (topGen‘ran (ball‘𝐷)) ∈ V | |
9 | 6, 7, 8 | fvmpt 7004 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷))) |
10 | 3, 9 | eqtrid 2777 | . 2 ⊢ (𝐷 ∈ ∪ ran ∞Met → 𝐽 = (topGen‘ran (ball‘𝐷))) |
11 | 2, 10 | syl 17 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∪ cuni 4909 ran crn 5679 ‘cfv 6549 topGenctg 17422 ∞Metcxmet 21281 ballcbl 21283 MetOpencmopn 21286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6501 df-fun 6551 df-fv 6557 df-mopn 21292 |
This theorem is referenced by: mopntopon 24389 elmopn 24392 imasf1oxms 24442 blssopn 24448 metss 24461 prdsxmslem2 24482 metcnp3 24493 xmetutop 24521 tgioo 24756 ismtyhmeolem 37405 |
Copyright terms: Public domain | W3C validator |