MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnval Structured version   Visualization version   GIF version

Theorem mopnval 23045
Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object (MetOpen‘𝐷) is the family of all open sets in the metric space determined by the metric 𝐷. By mopntop 23047, the open sets of a metric space form a topology 𝐽, whose base set is 𝐽 by mopnuni 23048. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopnval (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))

Proof of Theorem mopnval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6674 . . 3 (∞Met‘𝑋) ⊆ ran ∞Met
21sseli 3911 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
3 mopnval.1 . . 3 𝐽 = (MetOpen‘𝐷)
4 fveq2 6645 . . . . . 6 (𝑑 = 𝐷 → (ball‘𝑑) = (ball‘𝐷))
54rneqd 5772 . . . . 5 (𝑑 = 𝐷 → ran (ball‘𝑑) = ran (ball‘𝐷))
65fveq2d 6649 . . . 4 (𝑑 = 𝐷 → (topGen‘ran (ball‘𝑑)) = (topGen‘ran (ball‘𝐷)))
7 df-mopn 20087 . . . 4 MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
8 fvex 6658 . . . 4 (topGen‘ran (ball‘𝐷)) ∈ V
96, 7, 8fvmpt 6745 . . 3 (𝐷 ran ∞Met → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
103, 9syl5eq 2845 . 2 (𝐷 ran ∞Met → 𝐽 = (topGen‘ran (ball‘𝐷)))
112, 10syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111   cuni 4800  ran crn 5520  cfv 6324  topGenctg 16703  ∞Metcxmet 20076  ballcbl 20078  MetOpencmopn 20081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fv 6332  df-mopn 20087
This theorem is referenced by:  mopntopon  23046  elmopn  23049  imasf1oxms  23096  blssopn  23102  metss  23115  prdsxmslem2  23136  metcnp3  23147  xmetutop  23175  tgioo  23401  ismtyhmeolem  35242
  Copyright terms: Public domain W3C validator