Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mopnval | Structured version Visualization version GIF version |
Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object (MetOpen‘𝐷) is the family of all open sets in the metric space determined by the metric 𝐷. By mopntop 23501, the open sets of a metric space form a topology 𝐽, whose base set is ∪ 𝐽 by mopnuni 23502. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
mopnval.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
mopnval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvssunirn 6785 | . . 3 ⊢ (∞Met‘𝑋) ⊆ ∪ ran ∞Met | |
2 | 1 | sseli 3913 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ∪ ran ∞Met) |
3 | mopnval.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
4 | fveq2 6756 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (ball‘𝑑) = (ball‘𝐷)) | |
5 | 4 | rneqd 5836 | . . . . 5 ⊢ (𝑑 = 𝐷 → ran (ball‘𝑑) = ran (ball‘𝐷)) |
6 | 5 | fveq2d 6760 | . . . 4 ⊢ (𝑑 = 𝐷 → (topGen‘ran (ball‘𝑑)) = (topGen‘ran (ball‘𝐷))) |
7 | df-mopn 20506 | . . . 4 ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | |
8 | fvex 6769 | . . . 4 ⊢ (topGen‘ran (ball‘𝐷)) ∈ V | |
9 | 6, 7, 8 | fvmpt 6857 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷))) |
10 | 3, 9 | eqtrid 2790 | . 2 ⊢ (𝐷 ∈ ∪ ran ∞Met → 𝐽 = (topGen‘ran (ball‘𝐷))) |
11 | 2, 10 | syl 17 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ran crn 5581 ‘cfv 6418 topGenctg 17065 ∞Metcxmet 20495 ballcbl 20497 MetOpencmopn 20500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-mopn 20506 |
This theorem is referenced by: mopntopon 23500 elmopn 23503 imasf1oxms 23551 blssopn 23557 metss 23570 prdsxmslem2 23591 metcnp3 23602 xmetutop 23630 tgioo 23865 ismtyhmeolem 35889 |
Copyright terms: Public domain | W3C validator |