MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnval Structured version   Visualization version   GIF version

Theorem mopnval 24377
Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object (MetOpen‘𝐷) is the family of all open sets in the metric space determined by the metric 𝐷. By mopntop 24379, the open sets of a metric space form a topology 𝐽, whose base set is 𝐽 by mopnuni 24380. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopnval (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))

Proof of Theorem mopnval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6909 . . 3 (∞Met‘𝑋) ⊆ ran ∞Met
21sseli 3954 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
3 mopnval.1 . . 3 𝐽 = (MetOpen‘𝐷)
4 fveq2 6876 . . . . . 6 (𝑑 = 𝐷 → (ball‘𝑑) = (ball‘𝐷))
54rneqd 5918 . . . . 5 (𝑑 = 𝐷 → ran (ball‘𝑑) = ran (ball‘𝐷))
65fveq2d 6880 . . . 4 (𝑑 = 𝐷 → (topGen‘ran (ball‘𝑑)) = (topGen‘ran (ball‘𝐷)))
7 df-mopn 21311 . . . 4 MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
8 fvex 6889 . . . 4 (topGen‘ran (ball‘𝐷)) ∈ V
96, 7, 8fvmpt 6986 . . 3 (𝐷 ran ∞Met → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
103, 9eqtrid 2782 . 2 (𝐷 ran ∞Met → 𝐽 = (topGen‘ran (ball‘𝐷)))
112, 10syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   cuni 4883  ran crn 5655  cfv 6531  topGenctg 17451  ∞Metcxmet 21300  ballcbl 21302  MetOpencmopn 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fv 6539  df-mopn 21311
This theorem is referenced by:  mopntopon  24378  elmopn  24381  imasf1oxms  24428  blssopn  24434  metss  24447  prdsxmslem2  24468  metcnp3  24479  xmetutop  24507  tgioo  24735  ismtyhmeolem  37828
  Copyright terms: Public domain W3C validator