Detailed syntax breakdown of Definition df-plr
| Step | Hyp | Ref
| Expression |
| 1 | | cplr 10909 |
. 2
class
+R |
| 2 | | vx |
. . . . . . 7
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑥 |
| 4 | | cnr 10905 |
. . . . . 6
class
R |
| 5 | 3, 4 | wcel 2108 |
. . . . 5
wff 𝑥 ∈
R |
| 6 | | vy |
. . . . . . 7
setvar 𝑦 |
| 7 | 6 | cv 1539 |
. . . . . 6
class 𝑦 |
| 8 | 7, 4 | wcel 2108 |
. . . . 5
wff 𝑦 ∈
R |
| 9 | 5, 8 | wa 395 |
. . . 4
wff (𝑥 ∈ R ∧
𝑦 ∈
R) |
| 10 | | vw |
. . . . . . . . . . . . . 14
setvar 𝑤 |
| 11 | 10 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑤 |
| 12 | | vv |
. . . . . . . . . . . . . 14
setvar 𝑣 |
| 13 | 12 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑣 |
| 14 | 11, 13 | cop 4632 |
. . . . . . . . . . . 12
class
〈𝑤, 𝑣〉 |
| 15 | | cer 10904 |
. . . . . . . . . . . 12
class
~R |
| 16 | 14, 15 | cec 8743 |
. . . . . . . . . . 11
class
[〈𝑤, 𝑣〉]
~R |
| 17 | 3, 16 | wceq 1540 |
. . . . . . . . . 10
wff 𝑥 = [〈𝑤, 𝑣〉]
~R |
| 18 | | vu |
. . . . . . . . . . . . . 14
setvar 𝑢 |
| 19 | 18 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑢 |
| 20 | | vf |
. . . . . . . . . . . . . 14
setvar 𝑓 |
| 21 | 20 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑓 |
| 22 | 19, 21 | cop 4632 |
. . . . . . . . . . . 12
class
〈𝑢, 𝑓〉 |
| 23 | 22, 15 | cec 8743 |
. . . . . . . . . . 11
class
[〈𝑢, 𝑓〉]
~R |
| 24 | 7, 23 | wceq 1540 |
. . . . . . . . . 10
wff 𝑦 = [〈𝑢, 𝑓〉]
~R |
| 25 | 17, 24 | wa 395 |
. . . . . . . . 9
wff (𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R
) |
| 26 | | vz |
. . . . . . . . . . 11
setvar 𝑧 |
| 27 | 26 | cv 1539 |
. . . . . . . . . 10
class 𝑧 |
| 28 | | cpp 10901 |
. . . . . . . . . . . . 13
class
+P |
| 29 | 11, 19, 28 | co 7431 |
. . . . . . . . . . . 12
class (𝑤 +P
𝑢) |
| 30 | 13, 21, 28 | co 7431 |
. . . . . . . . . . . 12
class (𝑣 +P
𝑓) |
| 31 | 29, 30 | cop 4632 |
. . . . . . . . . . 11
class
〈(𝑤
+P 𝑢), (𝑣 +P 𝑓)〉 |
| 32 | 31, 15 | cec 8743 |
. . . . . . . . . 10
class
[〈(𝑤
+P 𝑢), (𝑣 +P 𝑓)〉]
~R |
| 33 | 27, 32 | wceq 1540 |
. . . . . . . . 9
wff 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑓)〉]
~R |
| 34 | 25, 33 | wa 395 |
. . . . . . . 8
wff ((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R ) |
| 35 | 34, 20 | wex 1779 |
. . . . . . 7
wff
∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R ) |
| 36 | 35, 18 | wex 1779 |
. . . . . 6
wff
∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R ) |
| 37 | 36, 12 | wex 1779 |
. . . . 5
wff
∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R ) |
| 38 | 37, 10 | wex 1779 |
. . . 4
wff
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R ) |
| 39 | 9, 38 | wa 395 |
. . 3
wff ((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R )) |
| 40 | 39, 2, 6, 26 | coprab 7432 |
. 2
class
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R ))} |
| 41 | 1, 40 | wceq 1540 |
1
wff
+R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R ))} |