![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > muval | Structured version Visualization version GIF version |
Description: The value of the MΓΆbius function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
muval | β’ (π΄ β β β (ΞΌβπ΄) = if(βπ β β (πβ2) β₯ π΄, 0, (-1β(β―β{π β β β£ π β₯ π΄})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5153 | . . . 4 β’ (π₯ = π΄ β ((πβ2) β₯ π₯ β (πβ2) β₯ π΄)) | |
2 | 1 | rexbidv 3179 | . . 3 β’ (π₯ = π΄ β (βπ β β (πβ2) β₯ π₯ β βπ β β (πβ2) β₯ π΄)) |
3 | breq2 5153 | . . . . . 6 β’ (π₯ = π΄ β (π β₯ π₯ β π β₯ π΄)) | |
4 | 3 | rabbidv 3441 | . . . . 5 β’ (π₯ = π΄ β {π β β β£ π β₯ π₯} = {π β β β£ π β₯ π΄}) |
5 | 4 | fveq2d 6896 | . . . 4 β’ (π₯ = π΄ β (β―β{π β β β£ π β₯ π₯}) = (β―β{π β β β£ π β₯ π΄})) |
6 | 5 | oveq2d 7425 | . . 3 β’ (π₯ = π΄ β (-1β(β―β{π β β β£ π β₯ π₯})) = (-1β(β―β{π β β β£ π β₯ π΄}))) |
7 | 2, 6 | ifbieq2d 4555 | . 2 β’ (π₯ = π΄ β if(βπ β β (πβ2) β₯ π₯, 0, (-1β(β―β{π β β β£ π β₯ π₯}))) = if(βπ β β (πβ2) β₯ π΄, 0, (-1β(β―β{π β β β£ π β₯ π΄})))) |
8 | df-mu 26605 | . 2 β’ ΞΌ = (π₯ β β β¦ if(βπ β β (πβ2) β₯ π₯, 0, (-1β(β―β{π β β β£ π β₯ π₯})))) | |
9 | c0ex 11208 | . . 3 β’ 0 β V | |
10 | ovex 7442 | . . 3 β’ (-1β(β―β{π β β β£ π β₯ π΄})) β V | |
11 | 9, 10 | ifex 4579 | . 2 β’ if(βπ β β (πβ2) β₯ π΄, 0, (-1β(β―β{π β β β£ π β₯ π΄}))) β V |
12 | 7, 8, 11 | fvmpt 6999 | 1 β’ (π΄ β β β (ΞΌβπ΄) = if(βπ β β (πβ2) β₯ π΄, 0, (-1β(β―β{π β β β£ π β₯ π΄})))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 βwrex 3071 {crab 3433 ifcif 4529 class class class wbr 5149 βcfv 6544 (class class class)co 7409 0cc0 11110 1c1 11111 -cneg 11445 βcn 12212 2c2 12267 βcexp 14027 β―chash 14290 β₯ cdvds 16197 βcprime 16608 ΞΌcmu 26599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-mulcl 11172 ax-i2m1 11178 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-mu 26605 |
This theorem is referenced by: muval1 26637 muval2 26638 isnsqf 26639 mule1 26652 |
Copyright terms: Public domain | W3C validator |