| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > muval | Structured version Visualization version GIF version | ||
| Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| Ref | Expression |
|---|---|
| muval | ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5095 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑝↑2) ∥ 𝑥 ↔ (𝑝↑2) ∥ 𝐴)) | |
| 2 | 1 | rexbidv 3156 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
| 3 | breq2 5095 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴)) | |
| 4 | 3 | rabbidv 3402 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
| 5 | 4 | fveq2d 6826 | . . . 4 ⊢ (𝑥 = 𝐴 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) = (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
| 6 | 5 | oveq2d 7362 | . . 3 ⊢ (𝑥 = 𝐴 → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
| 7 | 2, 6 | ifbieq2d 4502 | . 2 ⊢ (𝑥 = 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}))) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| 8 | df-mu 27039 | . 2 ⊢ μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})))) | |
| 9 | c0ex 11106 | . . 3 ⊢ 0 ∈ V | |
| 10 | ovex 7379 | . . 3 ⊢ (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) ∈ V | |
| 11 | 9, 10 | ifex 4526 | . 2 ⊢ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) ∈ V |
| 12 | 7, 8, 11 | fvmpt 6929 | 1 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 ifcif 4475 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 -cneg 11345 ℕcn 12125 2c2 12180 ↑cexp 13968 ♯chash 14237 ∥ cdvds 16163 ℙcprime 16582 μcmu 27033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-mu 27039 |
| This theorem is referenced by: muval1 27071 muval2 27072 isnsqf 27073 mule1 27086 |
| Copyright terms: Public domain | W3C validator |