MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muval Structured version   Visualization version   GIF version

Theorem muval 26636
Description: The value of the MΓΆbius function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
muval (𝐴 ∈ β„• β†’ (ΞΌβ€˜π΄) = if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))))
Distinct variable group:   𝐴,𝑝

Proof of Theorem muval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 breq2 5153 . . . 4 (π‘₯ = 𝐴 β†’ ((𝑝↑2) βˆ₯ π‘₯ ↔ (𝑝↑2) βˆ₯ 𝐴))
21rexbidv 3179 . . 3 (π‘₯ = 𝐴 β†’ (βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ π‘₯ ↔ βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴))
3 breq2 5153 . . . . . 6 (π‘₯ = 𝐴 β†’ (𝑝 βˆ₯ π‘₯ ↔ 𝑝 βˆ₯ 𝐴))
43rabbidv 3441 . . . . 5 (π‘₯ = 𝐴 β†’ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯} = {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})
54fveq2d 6896 . . . 4 (π‘₯ = 𝐴 β†’ (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯}) = (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))
65oveq2d 7425 . . 3 (π‘₯ = 𝐴 β†’ (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯})) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})))
72, 6ifbieq2d 4555 . 2 (π‘₯ = 𝐴 β†’ if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ π‘₯, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯}))) = if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))))
8 df-mu 26605 . 2 ΞΌ = (π‘₯ ∈ β„• ↦ if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ π‘₯, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯}))))
9 c0ex 11208 . . 3 0 ∈ V
10 ovex 7442 . . 3 (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})) ∈ V
119, 10ifex 4579 . 2 if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))) ∈ V
127, 8, 11fvmpt 6999 1 (𝐴 ∈ β„• β†’ (ΞΌβ€˜π΄) = if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  {crab 3433  ifcif 4529   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111  -cneg 11445  β„•cn 12212  2c2 12267  β†‘cexp 14027  β™―chash 14290   βˆ₯ cdvds 16197  β„™cprime 16608  ΞΌcmu 26599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-mulcl 11172  ax-i2m1 11178
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-mu 26605
This theorem is referenced by:  muval1  26637  muval2  26638  isnsqf  26639  mule1  26652
  Copyright terms: Public domain W3C validator