MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muval Structured version   Visualization version   GIF version

Theorem muval 27099
Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
muval (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
Distinct variable group:   𝐴,𝑝

Proof of Theorem muval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5128 . . . 4 (𝑥 = 𝐴 → ((𝑝↑2) ∥ 𝑥 ↔ (𝑝↑2) ∥ 𝐴))
21rexbidv 3165 . . 3 (𝑥 = 𝐴 → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
3 breq2 5128 . . . . . 6 (𝑥 = 𝐴 → (𝑝𝑥𝑝𝐴))
43rabbidv 3428 . . . . 5 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} = {𝑝 ∈ ℙ ∣ 𝑝𝐴})
54fveq2d 6885 . . . 4 (𝑥 = 𝐴 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥}) = (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))
65oveq2d 7426 . . 3 (𝑥 = 𝐴 → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥})) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
72, 6ifbieq2d 4532 . 2 (𝑥 = 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥}))) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
8 df-mu 27068 . 2 μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥}))))
9 c0ex 11234 . . 3 0 ∈ V
10 ovex 7443 . . 3 (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ∈ V
119, 10ifex 4556 . 2 if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) ∈ V
127, 8, 11fvmpt 6991 1 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3061  {crab 3420  ifcif 4505   class class class wbr 5124  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135  -cneg 11472  cn 12245  2c2 12300  cexp 14084  chash 14353  cdvds 16277  cprime 16695  μcmu 27062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-mulcl 11196  ax-i2m1 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-mu 27068
This theorem is referenced by:  muval1  27100  muval2  27101  isnsqf  27102  mule1  27115
  Copyright terms: Public domain W3C validator