| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > muval | Structured version Visualization version GIF version | ||
| Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| Ref | Expression |
|---|---|
| muval | ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5099 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑝↑2) ∥ 𝑥 ↔ (𝑝↑2) ∥ 𝐴)) | |
| 2 | 1 | rexbidv 3157 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
| 3 | breq2 5099 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴)) | |
| 4 | 3 | rabbidv 3403 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
| 5 | 4 | fveq2d 6834 | . . . 4 ⊢ (𝑥 = 𝐴 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) = (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
| 6 | 5 | oveq2d 7370 | . . 3 ⊢ (𝑥 = 𝐴 → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
| 7 | 2, 6 | ifbieq2d 4503 | . 2 ⊢ (𝑥 = 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}))) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| 8 | df-mu 27041 | . 2 ⊢ μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})))) | |
| 9 | c0ex 11115 | . . 3 ⊢ 0 ∈ V | |
| 10 | ovex 7387 | . . 3 ⊢ (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) ∈ V | |
| 11 | 9, 10 | ifex 4527 | . 2 ⊢ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) ∈ V |
| 12 | 7, 8, 11 | fvmpt 6937 | 1 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 ifcif 4476 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 0cc0 11015 1c1 11016 -cneg 11354 ℕcn 12134 2c2 12189 ↑cexp 13972 ♯chash 14241 ∥ cdvds 16167 ℙcprime 16586 μcmu 27035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-mulcl 11077 ax-i2m1 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-mu 27041 |
| This theorem is referenced by: muval1 27073 muval2 27074 isnsqf 27075 mule1 27088 |
| Copyright terms: Public domain | W3C validator |