Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > muval | Structured version Visualization version GIF version |
Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
muval | ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑝↑2) ∥ 𝑥 ↔ (𝑝↑2) ∥ 𝐴)) | |
2 | 1 | rexbidv 3225 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
3 | breq2 5074 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴)) | |
4 | 3 | rabbidv 3404 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
5 | 4 | fveq2d 6760 | . . . 4 ⊢ (𝑥 = 𝐴 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) = (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
6 | 5 | oveq2d 7271 | . . 3 ⊢ (𝑥 = 𝐴 → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
7 | 2, 6 | ifbieq2d 4482 | . 2 ⊢ (𝑥 = 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}))) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
8 | df-mu 26155 | . 2 ⊢ μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})))) | |
9 | c0ex 10900 | . . 3 ⊢ 0 ∈ V | |
10 | ovex 7288 | . . 3 ⊢ (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) ∈ V | |
11 | 9, 10 | ifex 4506 | . 2 ⊢ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) ∈ V |
12 | 7, 8, 11 | fvmpt 6857 | 1 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 ifcif 4456 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 -cneg 11136 ℕcn 11903 2c2 11958 ↑cexp 13710 ♯chash 13972 ∥ cdvds 15891 ℙcprime 16304 μcmu 26149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-mu 26155 |
This theorem is referenced by: muval1 26187 muval2 26188 isnsqf 26189 mule1 26202 |
Copyright terms: Public domain | W3C validator |