MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muval Structured version   Visualization version   GIF version

Theorem muval 27193
Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
muval (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
Distinct variable group:   𝐴,𝑝

Proof of Theorem muval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . . 4 (𝑥 = 𝐴 → ((𝑝↑2) ∥ 𝑥 ↔ (𝑝↑2) ∥ 𝐴))
21rexbidv 3185 . . 3 (𝑥 = 𝐴 → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
3 breq2 5170 . . . . . 6 (𝑥 = 𝐴 → (𝑝𝑥𝑝𝐴))
43rabbidv 3451 . . . . 5 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} = {𝑝 ∈ ℙ ∣ 𝑝𝐴})
54fveq2d 6924 . . . 4 (𝑥 = 𝐴 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥}) = (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))
65oveq2d 7464 . . 3 (𝑥 = 𝐴 → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥})) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
72, 6ifbieq2d 4574 . 2 (𝑥 = 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥}))) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
8 df-mu 27162 . 2 μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥}))))
9 c0ex 11284 . . 3 0 ∈ V
10 ovex 7481 . . 3 (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ∈ V
119, 10ifex 4598 . 2 if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) ∈ V
127, 8, 11fvmpt 7029 1 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  ifcif 4548   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  -cneg 11521  cn 12293  2c2 12348  cexp 14112  chash 14379  cdvds 16302  cprime 16718  μcmu 27156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-mulcl 11246  ax-i2m1 11252
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-mu 27162
This theorem is referenced by:  muval1  27194  muval2  27195  isnsqf  27196  mule1  27209
  Copyright terms: Public domain W3C validator