MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muval Structured version   Visualization version   GIF version

Theorem muval 27070
Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
muval (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
Distinct variable group:   𝐴,𝑝

Proof of Theorem muval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5095 . . . 4 (𝑥 = 𝐴 → ((𝑝↑2) ∥ 𝑥 ↔ (𝑝↑2) ∥ 𝐴))
21rexbidv 3156 . . 3 (𝑥 = 𝐴 → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
3 breq2 5095 . . . . . 6 (𝑥 = 𝐴 → (𝑝𝑥𝑝𝐴))
43rabbidv 3402 . . . . 5 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} = {𝑝 ∈ ℙ ∣ 𝑝𝐴})
54fveq2d 6826 . . . 4 (𝑥 = 𝐴 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥}) = (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))
65oveq2d 7362 . . 3 (𝑥 = 𝐴 → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥})) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
72, 6ifbieq2d 4502 . 2 (𝑥 = 𝐴 → if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥}))) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
8 df-mu 27039 . 2 μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥}))))
9 c0ex 11106 . . 3 0 ∈ V
10 ovex 7379 . . 3 (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ∈ V
119, 10ifex 4526 . 2 if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) ∈ V
127, 8, 11fvmpt 6929 1 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  ifcif 4475   class class class wbr 5091  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  -cneg 11345  cn 12125  2c2 12180  cexp 13968  chash 14237  cdvds 16163  cprime 16582  μcmu 27033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-mulcl 11068  ax-i2m1 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-mu 27039
This theorem is referenced by:  muval1  27071  muval2  27072  isnsqf  27073  mule1  27086
  Copyright terms: Public domain W3C validator