Detailed syntax breakdown of Definition df-naryf
| Step | Hyp | Ref
| Expression |
| 1 | | cnaryf 48547 |
. 2
class
-aryF |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | vx |
. . 3
setvar 𝑥 |
| 4 | | cn0 12526 |
. . 3
class
ℕ0 |
| 5 | | cvv 3480 |
. . 3
class
V |
| 6 | 3 | cv 1539 |
. . . 4
class 𝑥 |
| 7 | | cc0 11155 |
. . . . . 6
class
0 |
| 8 | 2 | cv 1539 |
. . . . . 6
class 𝑛 |
| 9 | | cfzo 13694 |
. . . . . 6
class
..^ |
| 10 | 7, 8, 9 | co 7431 |
. . . . 5
class
(0..^𝑛) |
| 11 | | cmap 8866 |
. . . . 5
class
↑m |
| 12 | 6, 10, 11 | co 7431 |
. . . 4
class (𝑥 ↑m (0..^𝑛)) |
| 13 | 6, 12, 11 | co 7431 |
. . 3
class (𝑥 ↑m (𝑥 ↑m (0..^𝑛))) |
| 14 | 2, 3, 4, 5, 13 | cmpo 7433 |
. 2
class (𝑛 ∈ ℕ0,
𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) |
| 15 | 1, 14 | wceq 1540 |
1
wff -aryF =
(𝑛 ∈
ℕ0, 𝑥
∈ V ↦ (𝑥
↑m (𝑥
↑m (0..^𝑛)))) |