Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfval | Structured version Visualization version GIF version |
Description: The set of the n-ary (endo)functions on a class 𝑋. (Contributed by AV, 13-May-2024.) |
Ref | Expression |
---|---|
naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
Ref | Expression |
---|---|
naryfval | ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
2 | oveq2 7263 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁)) | |
3 | naryfval.i | . . . . . . . 8 ⊢ 𝐼 = (0..^𝑁) | |
4 | 2, 3 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = 𝐼) |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (0..^𝑛) = 𝐼) |
6 | 1, 5 | oveq12d 7273 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑥 ↑m (0..^𝑛)) = (𝑋 ↑m 𝐼)) |
7 | 1, 6 | oveq12d 7273 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑥 ↑m (𝑥 ↑m (0..^𝑛))) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
8 | df-naryf 45861 | . . . 4 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
9 | ovex 7288 | . . . 4 ⊢ (𝑋 ↑m (𝑋 ↑m 𝐼)) ∈ V | |
10 | 7, 8, 9 | ovmpoa 7406 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
11 | 10 | ex 412 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼)))) |
12 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
13 | df-naryf 45861 | . . . . 5 ⊢ -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑛 ↑m (0..^𝑥)))) | |
14 | 13 | mpondm0 7488 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅) |
15 | 12, 14 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅) |
16 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝑋 ↑m 𝐼) ∈ V) → 𝑋 ∈ V) | |
17 | df-map 8575 | . . . . 5 ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
18 | 17 | mpondm0 7488 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ (𝑋 ↑m 𝐼) ∈ V) → (𝑋 ↑m (𝑋 ↑m 𝐼)) = ∅) |
19 | 16, 18 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m (𝑋 ↑m 𝐼)) = ∅) |
20 | 15, 19 | eqtr4d 2781 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
21 | 11, 20 | pm2.61d1 180 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 Vcvv 3422 ∅c0 4253 ⟶wf 6414 (class class class)co 7255 ↑m cmap 8573 0cc0 10802 ℕ0cn0 12163 ..^cfzo 13311 -aryF cnaryf 45860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-naryf 45861 |
This theorem is referenced by: naryfvalixp 45863 naryfvalel 45864 |
Copyright terms: Public domain | W3C validator |