Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryfval Structured version   Visualization version   GIF version

Theorem naryfval 48614
Description: The set of the n-ary (endo)functions on a class 𝑋. (Contributed by AV, 13-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryfval (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))

Proof of Theorem naryfval
Dummy variables 𝑛 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑥 = 𝑋)
2 oveq2 7361 . . . . . . . 8 (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁))
3 naryfval.i . . . . . . . 8 𝐼 = (0..^𝑁)
42, 3eqtr4di 2782 . . . . . . 7 (𝑛 = 𝑁 → (0..^𝑛) = 𝐼)
54adantr 480 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → (0..^𝑛) = 𝐼)
61, 5oveq12d 7371 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑥m (0..^𝑛)) = (𝑋m 𝐼))
71, 6oveq12d 7371 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑥m (𝑥m (0..^𝑛))) = (𝑋m (𝑋m 𝐼)))
8 df-naryf 48613 . . . 4 -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥m (𝑥m (0..^𝑛))))
9 ovex 7386 . . . 4 (𝑋m (𝑋m 𝐼)) ∈ V
107, 8, 9ovmpoa 7508 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
1110ex 412 . 2 (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼))))
12 simpr 484 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → 𝑋 ∈ V)
13 df-naryf 48613 . . . . 5 -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛m (𝑛m (0..^𝑥))))
1413mpondm0 7593 . . . 4 (¬ (𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅)
1512, 14nsyl5 159 . . 3 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅)
16 simpl 482 . . . 4 ((𝑋 ∈ V ∧ (𝑋m 𝐼) ∈ V) → 𝑋 ∈ V)
17 df-map 8762 . . . . 5 m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
1817mpondm0 7593 . . . 4 (¬ (𝑋 ∈ V ∧ (𝑋m 𝐼) ∈ V) → (𝑋m (𝑋m 𝐼)) = ∅)
1916, 18nsyl5 159 . . 3 𝑋 ∈ V → (𝑋m (𝑋m 𝐼)) = ∅)
2015, 19eqtr4d 2767 . 2 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
2111, 20pm2.61d1 180 1 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3438  c0 4286  wf 6482  (class class class)co 7353  m cmap 8760  0cc0 11028  0cn0 12402  ..^cfzo 13575  -aryF cnaryf 48612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-naryf 48613
This theorem is referenced by:  naryfvalixp  48615  naryfvalel  48616
  Copyright terms: Public domain W3C validator