Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfval | Structured version Visualization version GIF version |
Description: The set of the n-ary (endo)functions on a class 𝑋. (Contributed by AV, 13-May-2024.) |
Ref | Expression |
---|---|
naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
Ref | Expression |
---|---|
naryfval | ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
2 | oveq2 7283 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁)) | |
3 | naryfval.i | . . . . . . . 8 ⊢ 𝐼 = (0..^𝑁) | |
4 | 2, 3 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = 𝐼) |
5 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (0..^𝑛) = 𝐼) |
6 | 1, 5 | oveq12d 7293 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑥 ↑m (0..^𝑛)) = (𝑋 ↑m 𝐼)) |
7 | 1, 6 | oveq12d 7293 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑥 ↑m (𝑥 ↑m (0..^𝑛))) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
8 | df-naryf 45973 | . . . 4 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
9 | ovex 7308 | . . . 4 ⊢ (𝑋 ↑m (𝑋 ↑m 𝐼)) ∈ V | |
10 | 7, 8, 9 | ovmpoa 7428 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
11 | 10 | ex 413 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼)))) |
12 | simpr 485 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
13 | df-naryf 45973 | . . . . 5 ⊢ -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑛 ↑m (0..^𝑥)))) | |
14 | 13 | mpondm0 7510 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅) |
15 | 12, 14 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅) |
16 | simpl 483 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝑋 ↑m 𝐼) ∈ V) → 𝑋 ∈ V) | |
17 | df-map 8617 | . . . . 5 ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
18 | 17 | mpondm0 7510 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ (𝑋 ↑m 𝐼) ∈ V) → (𝑋 ↑m (𝑋 ↑m 𝐼)) = ∅) |
19 | 16, 18 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m (𝑋 ↑m 𝐼)) = ∅) |
20 | 15, 19 | eqtr4d 2781 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
21 | 11, 20 | pm2.61d1 180 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 Vcvv 3432 ∅c0 4256 ⟶wf 6429 (class class class)co 7275 ↑m cmap 8615 0cc0 10871 ℕ0cn0 12233 ..^cfzo 13382 -aryF cnaryf 45972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-naryf 45973 |
This theorem is referenced by: naryfvalixp 45975 naryfvalel 45976 |
Copyright terms: Public domain | W3C validator |