| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfval | Structured version Visualization version GIF version | ||
| Description: The set of the n-ary (endo)functions on a class 𝑋. (Contributed by AV, 13-May-2024.) |
| Ref | Expression |
|---|---|
| naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| naryfval | ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 2 | oveq2 7360 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁)) | |
| 3 | naryfval.i | . . . . . . . 8 ⊢ 𝐼 = (0..^𝑁) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = 𝐼) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (0..^𝑛) = 𝐼) |
| 6 | 1, 5 | oveq12d 7370 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑥 ↑m (0..^𝑛)) = (𝑋 ↑m 𝐼)) |
| 7 | 1, 6 | oveq12d 7370 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑥 ↑m (𝑥 ↑m (0..^𝑛))) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
| 8 | df-naryf 48753 | . . . 4 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
| 9 | ovex 7385 | . . . 4 ⊢ (𝑋 ↑m (𝑋 ↑m 𝐼)) ∈ V | |
| 10 | 7, 8, 9 | ovmpoa 7507 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
| 11 | 10 | ex 412 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼)))) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
| 13 | df-naryf 48753 | . . . . 5 ⊢ -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑛 ↑m (0..^𝑥)))) | |
| 14 | 13 | mpondm0 7592 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅) |
| 15 | 12, 14 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅) |
| 16 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝑋 ↑m 𝐼) ∈ V) → 𝑋 ∈ V) | |
| 17 | df-map 8758 | . . . . 5 ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 18 | 17 | mpondm0 7592 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ (𝑋 ↑m 𝐼) ∈ V) → (𝑋 ↑m (𝑋 ↑m 𝐼)) = ∅) |
| 19 | 16, 18 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m (𝑋 ↑m 𝐼)) = ∅) |
| 20 | 15, 19 | eqtr4d 2771 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
| 21 | 11, 20 | pm2.61d1 180 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 Vcvv 3437 ∅c0 4282 ⟶wf 6482 (class class class)co 7352 ↑m cmap 8756 0cc0 11013 ℕ0cn0 12388 ..^cfzo 13556 -aryF cnaryf 48752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-naryf 48753 |
| This theorem is referenced by: naryfvalixp 48755 naryfvalel 48756 |
| Copyright terms: Public domain | W3C validator |