Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfval | Structured version Visualization version GIF version |
Description: The set of the n-ary (endo)functions on a class 𝑋. (Contributed by AV, 13-May-2024.) |
Ref | Expression |
---|---|
naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
Ref | Expression |
---|---|
naryfval | ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
2 | oveq2 7324 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁)) | |
3 | naryfval.i | . . . . . . . 8 ⊢ 𝐼 = (0..^𝑁) | |
4 | 2, 3 | eqtr4di 2794 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = 𝐼) |
5 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (0..^𝑛) = 𝐼) |
6 | 1, 5 | oveq12d 7334 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑥 ↑m (0..^𝑛)) = (𝑋 ↑m 𝐼)) |
7 | 1, 6 | oveq12d 7334 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑥 ↑m (𝑥 ↑m (0..^𝑛))) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
8 | df-naryf 46243 | . . . 4 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
9 | ovex 7349 | . . . 4 ⊢ (𝑋 ↑m (𝑋 ↑m 𝐼)) ∈ V | |
10 | 7, 8, 9 | ovmpoa 7469 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
11 | 10 | ex 413 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼)))) |
12 | simpr 485 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
13 | df-naryf 46243 | . . . . 5 ⊢ -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑛 ↑m (0..^𝑥)))) | |
14 | 13 | mpondm0 7551 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅) |
15 | 12, 14 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅) |
16 | simpl 483 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝑋 ↑m 𝐼) ∈ V) → 𝑋 ∈ V) | |
17 | df-map 8666 | . . . . 5 ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
18 | 17 | mpondm0 7551 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ (𝑋 ↑m 𝐼) ∈ V) → (𝑋 ↑m (𝑋 ↑m 𝐼)) = ∅) |
19 | 16, 18 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m (𝑋 ↑m 𝐼)) = ∅) |
20 | 15, 19 | eqtr4d 2779 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
21 | 11, 20 | pm2.61d1 180 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2713 Vcvv 3440 ∅c0 4266 ⟶wf 6461 (class class class)co 7316 ↑m cmap 8664 0cc0 10950 ℕ0cn0 12312 ..^cfzo 13461 -aryF cnaryf 46242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-iota 6417 df-fun 6467 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-map 8666 df-naryf 46243 |
This theorem is referenced by: naryfvalixp 46245 naryfvalel 46246 |
Copyright terms: Public domain | W3C validator |