Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryfval Structured version   Visualization version   GIF version

Theorem naryfval 45974
Description: The set of the n-ary (endo)functions on a class 𝑋. (Contributed by AV, 13-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryfval (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))

Proof of Theorem naryfval
Dummy variables 𝑛 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑥 = 𝑋)
2 oveq2 7283 . . . . . . . 8 (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁))
3 naryfval.i . . . . . . . 8 𝐼 = (0..^𝑁)
42, 3eqtr4di 2796 . . . . . . 7 (𝑛 = 𝑁 → (0..^𝑛) = 𝐼)
54adantr 481 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → (0..^𝑛) = 𝐼)
61, 5oveq12d 7293 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑥m (0..^𝑛)) = (𝑋m 𝐼))
71, 6oveq12d 7293 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑥m (𝑥m (0..^𝑛))) = (𝑋m (𝑋m 𝐼)))
8 df-naryf 45973 . . . 4 -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥m (𝑥m (0..^𝑛))))
9 ovex 7308 . . . 4 (𝑋m (𝑋m 𝐼)) ∈ V
107, 8, 9ovmpoa 7428 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
1110ex 413 . 2 (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼))))
12 simpr 485 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → 𝑋 ∈ V)
13 df-naryf 45973 . . . . 5 -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛m (𝑛m (0..^𝑥))))
1413mpondm0 7510 . . . 4 (¬ (𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅)
1512, 14nsyl5 159 . . 3 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅)
16 simpl 483 . . . 4 ((𝑋 ∈ V ∧ (𝑋m 𝐼) ∈ V) → 𝑋 ∈ V)
17 df-map 8617 . . . . 5 m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
1817mpondm0 7510 . . . 4 (¬ (𝑋 ∈ V ∧ (𝑋m 𝐼) ∈ V) → (𝑋m (𝑋m 𝐼)) = ∅)
1916, 18nsyl5 159 . . 3 𝑋 ∈ V → (𝑋m (𝑋m 𝐼)) = ∅)
2015, 19eqtr4d 2781 . 2 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
2111, 20pm2.61d1 180 1 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  Vcvv 3432  c0 4256  wf 6429  (class class class)co 7275  m cmap 8615  0cc0 10871  0cn0 12233  ..^cfzo 13382  -aryF cnaryf 45972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-naryf 45973
This theorem is referenced by:  naryfvalixp  45975  naryfvalel  45976
  Copyright terms: Public domain W3C validator