Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryfval Structured version   Visualization version   GIF version

Theorem naryfval 47468
Description: The set of the n-ary (endo)functions on a class 𝑋. (Contributed by AV, 13-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryfval (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))

Proof of Theorem naryfval
Dummy variables 𝑛 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑥 = 𝑋)
2 oveq2 7409 . . . . . . . 8 (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁))
3 naryfval.i . . . . . . . 8 𝐼 = (0..^𝑁)
42, 3eqtr4di 2782 . . . . . . 7 (𝑛 = 𝑁 → (0..^𝑛) = 𝐼)
54adantr 480 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → (0..^𝑛) = 𝐼)
61, 5oveq12d 7419 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑥m (0..^𝑛)) = (𝑋m 𝐼))
71, 6oveq12d 7419 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑥m (𝑥m (0..^𝑛))) = (𝑋m (𝑋m 𝐼)))
8 df-naryf 47467 . . . 4 -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥m (𝑥m (0..^𝑛))))
9 ovex 7434 . . . 4 (𝑋m (𝑋m 𝐼)) ∈ V
107, 8, 9ovmpoa 7555 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
1110ex 412 . 2 (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼))))
12 simpr 484 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → 𝑋 ∈ V)
13 df-naryf 47467 . . . . 5 -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛m (𝑛m (0..^𝑥))))
1413mpondm0 7640 . . . 4 (¬ (𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅)
1512, 14nsyl5 159 . . 3 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅)
16 simpl 482 . . . 4 ((𝑋 ∈ V ∧ (𝑋m 𝐼) ∈ V) → 𝑋 ∈ V)
17 df-map 8817 . . . . 5 m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
1817mpondm0 7640 . . . 4 (¬ (𝑋 ∈ V ∧ (𝑋m 𝐼) ∈ V) → (𝑋m (𝑋m 𝐼)) = ∅)
1916, 18nsyl5 159 . . 3 𝑋 ∈ V → (𝑋m (𝑋m 𝐼)) = ∅)
2015, 19eqtr4d 2767 . 2 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
2111, 20pm2.61d1 180 1 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2701  Vcvv 3466  c0 4314  wf 6529  (class class class)co 7401  m cmap 8815  0cc0 11105  0cn0 12468  ..^cfzo 13623  -aryF cnaryf 47466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-iota 6485  df-fun 6535  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-map 8817  df-naryf 47467
This theorem is referenced by:  naryfvalixp  47469  naryfvalel  47470
  Copyright terms: Public domain W3C validator