|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfval | Structured version Visualization version GIF version | ||
| Description: The set of the n-ary (endo)functions on a class 𝑋. (Contributed by AV, 13-May-2024.) | 
| Ref | Expression | 
|---|---|
| naryfval.i | ⊢ 𝐼 = (0..^𝑁) | 
| Ref | Expression | 
|---|---|
| naryfval | ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 2 | oveq2 7439 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁)) | |
| 3 | naryfval.i | . . . . . . . 8 ⊢ 𝐼 = (0..^𝑁) | |
| 4 | 2, 3 | eqtr4di 2795 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = 𝐼) | 
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (0..^𝑛) = 𝐼) | 
| 6 | 1, 5 | oveq12d 7449 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑥 ↑m (0..^𝑛)) = (𝑋 ↑m 𝐼)) | 
| 7 | 1, 6 | oveq12d 7449 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑥 ↑m (𝑥 ↑m (0..^𝑛))) = (𝑋 ↑m (𝑋 ↑m 𝐼))) | 
| 8 | df-naryf 48548 | . . . 4 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
| 9 | ovex 7464 | . . . 4 ⊢ (𝑋 ↑m (𝑋 ↑m 𝐼)) ∈ V | |
| 10 | 7, 8, 9 | ovmpoa 7588 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) | 
| 11 | 10 | ex 412 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼)))) | 
| 12 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
| 13 | df-naryf 48548 | . . . . 5 ⊢ -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑛 ↑m (0..^𝑥)))) | |
| 14 | 13 | mpondm0 7673 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅) | 
| 15 | 12, 14 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅) | 
| 16 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝑋 ↑m 𝐼) ∈ V) → 𝑋 ∈ V) | |
| 17 | df-map 8868 | . . . . 5 ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 18 | 17 | mpondm0 7673 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ (𝑋 ↑m 𝐼) ∈ V) → (𝑋 ↑m (𝑋 ↑m 𝐼)) = ∅) | 
| 19 | 16, 18 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m (𝑋 ↑m 𝐼)) = ∅) | 
| 20 | 15, 19 | eqtr4d 2780 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) | 
| 21 | 11, 20 | pm2.61d1 180 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 Vcvv 3480 ∅c0 4333 ⟶wf 6557 (class class class)co 7431 ↑m cmap 8866 0cc0 11155 ℕ0cn0 12526 ..^cfzo 13694 -aryF cnaryf 48547 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-naryf 48548 | 
| This theorem is referenced by: naryfvalixp 48550 naryfvalel 48551 | 
| Copyright terms: Public domain | W3C validator |