Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryrcl Structured version   Visualization version   GIF version

Theorem naryrcl 45032
Description: Reverse closure for n-ary (endo)functions. (Contributed by AV, 14-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryrcl (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0𝑋 ∈ V))

Proof of Theorem naryrcl
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-naryf 45028 . 2 -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛m (𝑛m (0..^𝑥))))
21elmpocl 7371 1 (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0𝑋 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  (class class class)co 7139  m cmap 8393  0cc0 10530  0cn0 11889  ..^cfzo 13032  -aryF cnaryf 45027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-xp 5529  df-dm 5533  df-iota 6287  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-naryf 45028
This theorem is referenced by:  naryfvalelfv  45033  0aryfvalelfv  45036  fv1arycl  45038  1arymaptfv  45041  fv2arycl  45049  2arymaptfv  45052
  Copyright terms: Public domain W3C validator