Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryrcl Structured version   Visualization version   GIF version

Theorem naryrcl 48365
Description: Reverse closure for n-ary (endo)functions. (Contributed by AV, 14-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryrcl (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0𝑋 ∈ V))

Proof of Theorem naryrcl
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-naryf 48361 . 2 -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛m (𝑛m (0..^𝑥))))
21elmpocl 7691 1 (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0𝑋 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  (class class class)co 7448  m cmap 8884  0cc0 11184  0cn0 12553  ..^cfzo 13711  -aryF cnaryf 48360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-naryf 48361
This theorem is referenced by:  naryfvalelfv  48366  0aryfvalelfv  48369  fv1arycl  48371  1arymaptfv  48374  fv2arycl  48382  2arymaptfv  48385
  Copyright terms: Public domain W3C validator