Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryrcl Structured version   Visualization version   GIF version

Theorem naryrcl 48510
Description: Reverse closure for n-ary (endo)functions. (Contributed by AV, 14-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryrcl (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0𝑋 ∈ V))

Proof of Theorem naryrcl
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-naryf 48506 . 2 -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛m (𝑛m (0..^𝑥))))
21elmpocl 7656 1 (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0𝑋 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  (class class class)co 7413  m cmap 8848  0cc0 11137  0cn0 12509  ..^cfzo 13676  -aryF cnaryf 48505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-xp 5671  df-dm 5675  df-iota 6494  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-naryf 48506
This theorem is referenced by:  naryfvalelfv  48511  0aryfvalelfv  48514  fv1arycl  48516  1arymaptfv  48519  fv2arycl  48527  2arymaptfv  48530
  Copyright terms: Public domain W3C validator