![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2aryenef | Structured version Visualization version GIF version |
Description: The set of binary (endo)functions and the set of binary operations are equinumerous. (Contributed by AV, 19-May-2024.) |
Ref | Expression |
---|---|
2aryenef | ⊢ (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7483 | . . . . . 6 ⊢ (2-aryF 𝑋) ∈ V | |
2 | 1 | mptex 7262 | . . . . 5 ⊢ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ∈ V |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ∈ V) |
4 | eqid 2740 | . . . . 5 ⊢ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) = (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | |
5 | 4 | 2arymaptf1o 48391 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))):(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) |
6 | f1oeq1 6852 | . . . 4 ⊢ (ℎ = (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) → (ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))):(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋)))) | |
7 | 3, 5, 6 | spcedv 3611 | . . 3 ⊢ (𝑋 ∈ V → ∃ℎ ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) |
8 | bren 9015 | . . 3 ⊢ ((2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ ∃ℎ ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) | |
9 | 7, 8 | sylibr 234 | . 2 ⊢ (𝑋 ∈ V → (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋))) |
10 | 0ex 5325 | . . . . 5 ⊢ ∅ ∈ V | |
11 | 10 | enref 9047 | . . . 4 ⊢ ∅ ≈ ∅ |
12 | 11 | a1i 11 | . . 3 ⊢ (¬ 𝑋 ∈ V → ∅ ≈ ∅) |
13 | df-naryf 48363 | . . . . 5 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
14 | 13 | reldmmpo 7586 | . . . 4 ⊢ Rel dom -aryF |
15 | 14 | ovprc2 7490 | . . 3 ⊢ (¬ 𝑋 ∈ V → (2-aryF 𝑋) = ∅) |
16 | reldmmap 8895 | . . . 4 ⊢ Rel dom ↑m | |
17 | 16 | ovprc1 7489 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m (𝑋 × 𝑋)) = ∅) |
18 | 12, 15, 17 | 3brtr4d 5198 | . 2 ⊢ (¬ 𝑋 ∈ V → (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋))) |
19 | 9, 18 | pm2.61i 182 | 1 ⊢ (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {cpr 4650 〈cop 4654 class class class wbr 5166 ↦ cmpt 5249 × cxp 5698 –1-1-onto→wf1o 6574 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 ↑m cmap 8886 ≈ cen 9002 0cc0 11186 1c1 11187 2c2 12350 ℕ0cn0 12555 ..^cfzo 13713 -aryF cnaryf 48362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-n0 12556 df-z 12642 df-uz 12906 df-fz 13570 df-fzo 13714 df-naryf 48363 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |