![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2aryenef | Structured version Visualization version GIF version |
Description: The set of binary (endo)functions and the set of binary operations are equinumerous. (Contributed by AV, 19-May-2024.) |
Ref | Expression |
---|---|
2aryenef | ⊢ (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7471 | . . . . . 6 ⊢ (2-aryF 𝑋) ∈ V | |
2 | 1 | mptex 7250 | . . . . 5 ⊢ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ∈ V |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ∈ V) |
4 | eqid 2737 | . . . . 5 ⊢ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) = (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | |
5 | 4 | 2arymaptf1o 48543 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))):(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) |
6 | f1oeq1 6844 | . . . 4 ⊢ (ℎ = (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) → (ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))):(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋)))) | |
7 | 3, 5, 6 | spcedv 3601 | . . 3 ⊢ (𝑋 ∈ V → ∃ℎ ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) |
8 | bren 9003 | . . 3 ⊢ ((2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ ∃ℎ ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) | |
9 | 7, 8 | sylibr 234 | . 2 ⊢ (𝑋 ∈ V → (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋))) |
10 | 0ex 5316 | . . . . 5 ⊢ ∅ ∈ V | |
11 | 10 | enref 9033 | . . . 4 ⊢ ∅ ≈ ∅ |
12 | 11 | a1i 11 | . . 3 ⊢ (¬ 𝑋 ∈ V → ∅ ≈ ∅) |
13 | df-naryf 48515 | . . . . 5 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
14 | 13 | reldmmpo 7574 | . . . 4 ⊢ Rel dom -aryF |
15 | 14 | ovprc2 7478 | . . 3 ⊢ (¬ 𝑋 ∈ V → (2-aryF 𝑋) = ∅) |
16 | reldmmap 8883 | . . . 4 ⊢ Rel dom ↑m | |
17 | 16 | ovprc1 7477 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m (𝑋 × 𝑋)) = ∅) |
18 | 12, 15, 17 | 3brtr4d 5183 | . 2 ⊢ (¬ 𝑋 ∈ V → (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋))) |
19 | 9, 18 | pm2.61i 182 | 1 ⊢ (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1778 ∈ wcel 2108 Vcvv 3481 ∅c0 4342 {cpr 4636 〈cop 4640 class class class wbr 5151 ↦ cmpt 5234 × cxp 5691 –1-1-onto→wf1o 6568 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 ↑m cmap 8874 ≈ cen 8990 0cc0 11162 1c1 11163 2c2 12328 ℕ0cn0 12533 ..^cfzo 13700 -aryF cnaryf 48514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-naryf 48515 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |