| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2aryenef | Structured version Visualization version GIF version | ||
| Description: The set of binary (endo)functions and the set of binary operations are equinumerous. (Contributed by AV, 19-May-2024.) |
| Ref | Expression |
|---|---|
| 2aryenef | ⊢ (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7427 | . . . . . 6 ⊢ (2-aryF 𝑋) ∈ V | |
| 2 | 1 | mptex 7204 | . . . . 5 ⊢ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ∈ V |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ∈ V) |
| 4 | eqid 2730 | . . . . 5 ⊢ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) = (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | |
| 5 | 4 | 2arymaptf1o 48577 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))):(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) |
| 6 | f1oeq1 6795 | . . . 4 ⊢ (ℎ = (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) → (ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))):(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋)))) | |
| 7 | 3, 5, 6 | spcedv 3573 | . . 3 ⊢ (𝑋 ∈ V → ∃ℎ ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) |
| 8 | bren 8932 | . . 3 ⊢ ((2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ ∃ℎ ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) | |
| 9 | 7, 8 | sylibr 234 | . 2 ⊢ (𝑋 ∈ V → (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋))) |
| 10 | 0ex 5270 | . . . . 5 ⊢ ∅ ∈ V | |
| 11 | 10 | enref 8962 | . . . 4 ⊢ ∅ ≈ ∅ |
| 12 | 11 | a1i 11 | . . 3 ⊢ (¬ 𝑋 ∈ V → ∅ ≈ ∅) |
| 13 | df-naryf 48549 | . . . . 5 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
| 14 | 13 | reldmmpo 7530 | . . . 4 ⊢ Rel dom -aryF |
| 15 | 14 | ovprc2 7434 | . . 3 ⊢ (¬ 𝑋 ∈ V → (2-aryF 𝑋) = ∅) |
| 16 | reldmmap 8812 | . . . 4 ⊢ Rel dom ↑m | |
| 17 | 16 | ovprc1 7433 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m (𝑋 × 𝑋)) = ∅) |
| 18 | 12, 15, 17 | 3brtr4d 5147 | . 2 ⊢ (¬ 𝑋 ∈ V → (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋))) |
| 19 | 9, 18 | pm2.61i 182 | 1 ⊢ (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1779 ∈ wcel 2109 Vcvv 3455 ∅c0 4304 {cpr 4599 〈cop 4603 class class class wbr 5115 ↦ cmpt 5196 × cxp 5644 –1-1-onto→wf1o 6518 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 ↑m cmap 8803 ≈ cen 8919 0cc0 11086 1c1 11087 2c2 12252 ℕ0cn0 12458 ..^cfzo 13628 -aryF cnaryf 48548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-naryf 48549 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |