| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2aryenef | Structured version Visualization version GIF version | ||
| Description: The set of binary (endo)functions and the set of binary operations are equinumerous. (Contributed by AV, 19-May-2024.) |
| Ref | Expression |
|---|---|
| 2aryenef | ⊢ (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7379 | . . . . . 6 ⊢ (2-aryF 𝑋) ∈ V | |
| 2 | 1 | mptex 7157 | . . . . 5 ⊢ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ∈ V |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ∈ V) |
| 4 | eqid 2731 | . . . . 5 ⊢ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) = (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | |
| 5 | 4 | 2arymaptf1o 48766 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))):(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) |
| 6 | f1oeq1 6751 | . . . 4 ⊢ (ℎ = (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) → (ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉, 〈1, 𝑦〉}))):(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋)))) | |
| 7 | 3, 5, 6 | spcedv 3548 | . . 3 ⊢ (𝑋 ∈ V → ∃ℎ ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) |
| 8 | bren 8879 | . . 3 ⊢ ((2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ ∃ℎ ℎ:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) | |
| 9 | 7, 8 | sylibr 234 | . 2 ⊢ (𝑋 ∈ V → (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋))) |
| 10 | 0ex 5243 | . . . . 5 ⊢ ∅ ∈ V | |
| 11 | 10 | enref 8907 | . . . 4 ⊢ ∅ ≈ ∅ |
| 12 | 11 | a1i 11 | . . 3 ⊢ (¬ 𝑋 ∈ V → ∅ ≈ ∅) |
| 13 | df-naryf 48738 | . . . . 5 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
| 14 | 13 | reldmmpo 7480 | . . . 4 ⊢ Rel dom -aryF |
| 15 | 14 | ovprc2 7386 | . . 3 ⊢ (¬ 𝑋 ∈ V → (2-aryF 𝑋) = ∅) |
| 16 | reldmmap 8759 | . . . 4 ⊢ Rel dom ↑m | |
| 17 | 16 | ovprc1 7385 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m (𝑋 × 𝑋)) = ∅) |
| 18 | 12, 15, 17 | 3brtr4d 5121 | . 2 ⊢ (¬ 𝑋 ∈ V → (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋))) |
| 19 | 9, 18 | pm2.61i 182 | 1 ⊢ (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 {cpr 4575 〈cop 4579 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 ≈ cen 8866 0cc0 11006 1c1 11007 2c2 12180 ℕ0cn0 12381 ..^cfzo 13554 -aryF cnaryf 48737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-naryf 48738 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |