Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2aryenef Structured version   Visualization version   GIF version

Theorem 2aryenef 48638
Description: The set of binary (endo)functions and the set of binary operations are equinumerous. (Contributed by AV, 19-May-2024.)
Assertion
Ref Expression
2aryenef (2-aryF 𝑋) ≈ (𝑋m (𝑋 × 𝑋))

Proof of Theorem 2aryenef
Dummy variables 𝑓 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7402 . . . . . 6 (2-aryF 𝑋) ∈ V
21mptex 7179 . . . . 5 (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))) ∈ V
32a1i 11 . . . 4 (𝑋 ∈ V → (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))) ∈ V)
4 eqid 2729 . . . . 5 (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))) = (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
542arymaptf1o 48637 . . . 4 (𝑋 ∈ V → (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))):(2-aryF 𝑋)–1-1-onto→(𝑋m (𝑋 × 𝑋)))
6 f1oeq1 6770 . . . 4 ( = (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))) → (:(2-aryF 𝑋)–1-1-onto→(𝑋m (𝑋 × 𝑋)) ↔ (𝑓 ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))):(2-aryF 𝑋)–1-1-onto→(𝑋m (𝑋 × 𝑋))))
73, 5, 6spcedv 3561 . . 3 (𝑋 ∈ V → ∃ :(2-aryF 𝑋)–1-1-onto→(𝑋m (𝑋 × 𝑋)))
8 bren 8905 . . 3 ((2-aryF 𝑋) ≈ (𝑋m (𝑋 × 𝑋)) ↔ ∃ :(2-aryF 𝑋)–1-1-onto→(𝑋m (𝑋 × 𝑋)))
97, 8sylibr 234 . 2 (𝑋 ∈ V → (2-aryF 𝑋) ≈ (𝑋m (𝑋 × 𝑋)))
10 0ex 5257 . . . . 5 ∅ ∈ V
1110enref 8933 . . . 4 ∅ ≈ ∅
1211a1i 11 . . 3 𝑋 ∈ V → ∅ ≈ ∅)
13 df-naryf 48609 . . . . 5 -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥m (𝑥m (0..^𝑛))))
1413reldmmpo 7503 . . . 4 Rel dom -aryF
1514ovprc2 7409 . . 3 𝑋 ∈ V → (2-aryF 𝑋) = ∅)
16 reldmmap 8785 . . . 4 Rel dom ↑m
1716ovprc1 7408 . . 3 𝑋 ∈ V → (𝑋m (𝑋 × 𝑋)) = ∅)
1812, 15, 173brtr4d 5134 . 2 𝑋 ∈ V → (2-aryF 𝑋) ≈ (𝑋m (𝑋 × 𝑋)))
199, 18pm2.61i 182 1 (2-aryF 𝑋) ≈ (𝑋m (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wex 1779  wcel 2109  Vcvv 3444  c0 4292  {cpr 4587  cop 4591   class class class wbr 5102  cmpt 5183   × cxp 5629  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cmpo 7371  m cmap 8776  cen 8892  0cc0 11044  1c1 11045  2c2 12217  0cn0 12418  ..^cfzo 13591  -aryF cnaryf 48608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-naryf 48609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator