Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1aryenef | Structured version Visualization version GIF version |
Description: The set of unary (endo)functions and the set of endofunctions are equinumerous. (Contributed by AV, 19-May-2024.) |
Ref | Expression |
---|---|
1aryenef | ⊢ (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7308 | . . . . . 6 ⊢ (1-aryF 𝑋) ∈ V | |
2 | 1 | mptex 7099 | . . . . 5 ⊢ (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))) ∈ V |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))) ∈ V) |
4 | eqid 2738 | . . . . 5 ⊢ (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))) = (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))) | |
5 | 4 | 1arymaptf1o 45990 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))):(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) |
6 | f1oeq1 6704 | . . . 4 ⊢ (ℎ = (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))) → (ℎ:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋) ↔ (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))):(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋))) | |
7 | 3, 5, 6 | spcedv 3537 | . . 3 ⊢ (𝑋 ∈ V → ∃ℎ ℎ:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) |
8 | bren 8743 | . . 3 ⊢ ((1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) ↔ ∃ℎ ℎ:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) | |
9 | 7, 8 | sylibr 233 | . 2 ⊢ (𝑋 ∈ V → (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋)) |
10 | 0ex 5231 | . . . . 5 ⊢ ∅ ∈ V | |
11 | 10 | enref 8773 | . . . 4 ⊢ ∅ ≈ ∅ |
12 | 11 | a1i 11 | . . 3 ⊢ (¬ 𝑋 ∈ V → ∅ ≈ ∅) |
13 | df-naryf 45973 | . . . . 5 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
14 | 13 | reldmmpo 7408 | . . . 4 ⊢ Rel dom -aryF |
15 | 14 | ovprc2 7315 | . . 3 ⊢ (¬ 𝑋 ∈ V → (1-aryF 𝑋) = ∅) |
16 | reldmmap 8624 | . . . 4 ⊢ Rel dom ↑m | |
17 | 16 | ovprc1 7314 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m 𝑋) = ∅) |
18 | 12, 15, 17 | 3brtr4d 5106 | . 2 ⊢ (¬ 𝑋 ∈ V → (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋)) |
19 | 9, 18 | pm2.61i 182 | 1 ⊢ (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {csn 4561 〈cop 4567 class class class wbr 5074 ↦ cmpt 5157 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ≈ cen 8730 0cc0 10871 1c1 10872 ℕ0cn0 12233 ..^cfzo 13382 -aryF cnaryf 45972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-naryf 45973 |
This theorem is referenced by: 1aryenefmnd 45992 |
Copyright terms: Public domain | W3C validator |