![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1aryenef | Structured version Visualization version GIF version |
Description: The set of unary (endo)functions and the set of endofunctions are equinumerous. (Contributed by AV, 19-May-2024.) |
Ref | Expression |
---|---|
1aryenef | ⊢ (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7441 | . . . . . 6 ⊢ (1-aryF 𝑋) ∈ V | |
2 | 1 | mptex 7224 | . . . . 5 ⊢ (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))) ∈ V |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))) ∈ V) |
4 | eqid 2732 | . . . . 5 ⊢ (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))) = (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))) | |
5 | 4 | 1arymaptf1o 47320 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))):(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) |
6 | f1oeq1 6821 | . . . 4 ⊢ (ℎ = (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))) → (ℎ:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋) ↔ (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))):(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋))) | |
7 | 3, 5, 6 | spcedv 3588 | . . 3 ⊢ (𝑋 ∈ V → ∃ℎ ℎ:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) |
8 | bren 8948 | . . 3 ⊢ ((1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) ↔ ∃ℎ ℎ:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) | |
9 | 7, 8 | sylibr 233 | . 2 ⊢ (𝑋 ∈ V → (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋)) |
10 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
11 | 10 | enref 8980 | . . . 4 ⊢ ∅ ≈ ∅ |
12 | 11 | a1i 11 | . . 3 ⊢ (¬ 𝑋 ∈ V → ∅ ≈ ∅) |
13 | df-naryf 47303 | . . . . 5 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
14 | 13 | reldmmpo 7542 | . . . 4 ⊢ Rel dom -aryF |
15 | 14 | ovprc2 7448 | . . 3 ⊢ (¬ 𝑋 ∈ V → (1-aryF 𝑋) = ∅) |
16 | reldmmap 8828 | . . . 4 ⊢ Rel dom ↑m | |
17 | 16 | ovprc1 7447 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m 𝑋) = ∅) |
18 | 12, 15, 17 | 3brtr4d 5180 | . 2 ⊢ (¬ 𝑋 ∈ V → (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋)) |
19 | 9, 18 | pm2.61i 182 | 1 ⊢ (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ∅c0 4322 {csn 4628 ⟨cop 4634 class class class wbr 5148 ↦ cmpt 5231 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7408 ↑m cmap 8819 ≈ cen 8935 0cc0 11109 1c1 11110 ℕ0cn0 12471 ..^cfzo 13626 -aryF cnaryf 47302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-naryf 47303 |
This theorem is referenced by: 1aryenefmnd 47322 |
Copyright terms: Public domain | W3C validator |