Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1aryenef | Structured version Visualization version GIF version |
Description: The set of unary (endo)functions and the set of endofunctions are equinumerous. (Contributed by AV, 19-May-2024.) |
Ref | Expression |
---|---|
1aryenef | ⊢ (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7203 | . . . . . 6 ⊢ (1-aryF 𝑋) ∈ V | |
2 | 1 | mptex 6996 | . . . . 5 ⊢ (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))) ∈ V |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))) ∈ V) |
4 | eqid 2738 | . . . . 5 ⊢ (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))) = (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))) | |
5 | 4 | 1arymaptf1o 45524 | . . . 4 ⊢ (𝑋 ∈ V → (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))):(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) |
6 | f1oeq1 6606 | . . . 4 ⊢ (ℎ = (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))) → (ℎ:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋) ↔ (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (𝑓‘{〈0, 𝑥〉}))):(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋))) | |
7 | 3, 5, 6 | spcedv 3502 | . . 3 ⊢ (𝑋 ∈ V → ∃ℎ ℎ:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) |
8 | bren 8564 | . . 3 ⊢ ((1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) ↔ ∃ℎ ℎ:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) | |
9 | 7, 8 | sylibr 237 | . 2 ⊢ (𝑋 ∈ V → (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋)) |
10 | 0ex 5175 | . . . . 5 ⊢ ∅ ∈ V | |
11 | 10 | enref 8588 | . . . 4 ⊢ ∅ ≈ ∅ |
12 | 11 | a1i 11 | . . 3 ⊢ (¬ 𝑋 ∈ V → ∅ ≈ ∅) |
13 | df-naryf 45507 | . . . . 5 ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | |
14 | 13 | reldmmpo 7300 | . . . 4 ⊢ Rel dom -aryF |
15 | 14 | ovprc2 7210 | . . 3 ⊢ (¬ 𝑋 ∈ V → (1-aryF 𝑋) = ∅) |
16 | reldmmap 8446 | . . . 4 ⊢ Rel dom ↑m | |
17 | 16 | ovprc1 7209 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m 𝑋) = ∅) |
18 | 12, 15, 17 | 3brtr4d 5062 | . 2 ⊢ (¬ 𝑋 ∈ V → (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋)) |
19 | 9, 18 | pm2.61i 185 | 1 ⊢ (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1786 ∈ wcel 2114 Vcvv 3398 ∅c0 4211 {csn 4516 〈cop 4522 class class class wbr 5030 ↦ cmpt 5110 –1-1-onto→wf1o 6338 ‘cfv 6339 (class class class)co 7170 ↑m cmap 8437 ≈ cen 8552 0cc0 10615 1c1 10616 ℕ0cn0 11976 ..^cfzo 13124 -aryF cnaryf 45506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-n0 11977 df-z 12063 df-uz 12325 df-fz 12982 df-fzo 13125 df-naryf 45507 |
This theorem is referenced by: 1aryenefmnd 45526 |
Copyright terms: Public domain | W3C validator |