Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1aryenef Structured version   Visualization version   GIF version

Theorem 1aryenef 45879
Description: The set of unary (endo)functions and the set of endofunctions are equinumerous. (Contributed by AV, 19-May-2024.)
Assertion
Ref Expression
1aryenef (1-aryF 𝑋) ≈ (𝑋m 𝑋)

Proof of Theorem 1aryenef
Dummy variables 𝑓 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7288 . . . . . 6 (1-aryF 𝑋) ∈ V
21mptex 7081 . . . . 5 (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))) ∈ V
32a1i 11 . . . 4 (𝑋 ∈ V → (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))) ∈ V)
4 eqid 2738 . . . . 5 (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))) = (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩})))
541arymaptf1o 45878 . . . 4 (𝑋 ∈ V → (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))):(1-aryF 𝑋)–1-1-onto→(𝑋m 𝑋))
6 f1oeq1 6688 . . . 4 ( = (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))) → (:(1-aryF 𝑋)–1-1-onto→(𝑋m 𝑋) ↔ (𝑓 ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (𝑓‘{⟨0, 𝑥⟩}))):(1-aryF 𝑋)–1-1-onto→(𝑋m 𝑋)))
73, 5, 6spcedv 3527 . . 3 (𝑋 ∈ V → ∃ :(1-aryF 𝑋)–1-1-onto→(𝑋m 𝑋))
8 bren 8701 . . 3 ((1-aryF 𝑋) ≈ (𝑋m 𝑋) ↔ ∃ :(1-aryF 𝑋)–1-1-onto→(𝑋m 𝑋))
97, 8sylibr 233 . 2 (𝑋 ∈ V → (1-aryF 𝑋) ≈ (𝑋m 𝑋))
10 0ex 5226 . . . . 5 ∅ ∈ V
1110enref 8728 . . . 4 ∅ ≈ ∅
1211a1i 11 . . 3 𝑋 ∈ V → ∅ ≈ ∅)
13 df-naryf 45861 . . . . 5 -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥m (𝑥m (0..^𝑛))))
1413reldmmpo 7386 . . . 4 Rel dom -aryF
1514ovprc2 7295 . . 3 𝑋 ∈ V → (1-aryF 𝑋) = ∅)
16 reldmmap 8582 . . . 4 Rel dom ↑m
1716ovprc1 7294 . . 3 𝑋 ∈ V → (𝑋m 𝑋) = ∅)
1812, 15, 173brtr4d 5102 . 2 𝑋 ∈ V → (1-aryF 𝑋) ≈ (𝑋m 𝑋))
199, 18pm2.61i 182 1 (1-aryF 𝑋) ≈ (𝑋m 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wex 1783  wcel 2108  Vcvv 3422  c0 4253  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  m cmap 8573  cen 8688  0cc0 10802  1c1 10803  0cn0 12163  ..^cfzo 13311  -aryF cnaryf 45860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-naryf 45861
This theorem is referenced by:  1aryenefmnd  45880
  Copyright terms: Public domain W3C validator