Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfvalixp | Structured version Visualization version GIF version |
Description: The set of the n-ary (endo)functions on a class 𝑋 expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024.) |
Ref | Expression |
---|---|
naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
Ref | Expression |
---|---|
naryfvalixp | ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naryfval.i | . . . . . 6 ⊢ 𝐼 = (0..^𝑁) | |
2 | 1 | naryfval 45862 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
4 | 1 | ovexi 7289 | . . . . . . 7 ⊢ 𝐼 ∈ V |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝐼 ∈ V) |
6 | ixpconstg 8652 | . . . . . 6 ⊢ ((𝐼 ∈ V ∧ 𝑋 ∈ V) → X𝑥 ∈ 𝐼 𝑋 = (𝑋 ↑m 𝐼)) | |
7 | 5, 6 | sylan 579 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → X𝑥 ∈ 𝐼 𝑋 = (𝑋 ↑m 𝐼)) |
8 | 7 | oveq2d 7271 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
9 | 3, 8 | eqtr4d 2781 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋)) |
10 | 9 | ex 412 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋))) |
11 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
12 | df-naryf 45861 | . . . . 5 ⊢ -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑛 ↑m (0..^𝑥)))) | |
13 | 12 | mpondm0 7488 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅) |
14 | 11, 13 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅) |
15 | reldmmap 8582 | . . . 4 ⊢ Rel dom ↑m | |
16 | 15 | ovprc1 7294 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋) = ∅) |
17 | 14, 16 | eqtr4d 2781 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋)) |
18 | 10, 17 | pm2.61d1 180 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 (class class class)co 7255 ↑m cmap 8573 Xcixp 8643 0cc0 10802 ℕ0cn0 12163 ..^cfzo 13311 -aryF cnaryf 45860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-ixp 8644 df-naryf 45861 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |