Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryfvalixp Structured version   Visualization version   GIF version

Theorem naryfvalixp 45863
Description: The set of the n-ary (endo)functions on a class 𝑋 expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryfvalixp (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑁   𝑥,𝑋

Proof of Theorem naryfvalixp
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 naryfval.i . . . . . 6 𝐼 = (0..^𝑁)
21naryfval 45862 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
32adantr 480 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
41ovexi 7289 . . . . . . 7 𝐼 ∈ V
54a1i 11 . . . . . 6 (𝑁 ∈ ℕ0𝐼 ∈ V)
6 ixpconstg 8652 . . . . . 6 ((𝐼 ∈ V ∧ 𝑋 ∈ V) → X𝑥𝐼 𝑋 = (𝑋m 𝐼))
75, 6sylan 579 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ V) → X𝑥𝐼 𝑋 = (𝑋m 𝐼))
87oveq2d 7271 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑋m X𝑥𝐼 𝑋) = (𝑋m (𝑋m 𝐼)))
93, 8eqtr4d 2781 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
109ex 412 . 2 (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋)))
11 simpr 484 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → 𝑋 ∈ V)
12 df-naryf 45861 . . . . 5 -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛m (𝑛m (0..^𝑥))))
1312mpondm0 7488 . . . 4 (¬ (𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅)
1411, 13nsyl5 159 . . 3 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅)
15 reldmmap 8582 . . . 4 Rel dom ↑m
1615ovprc1 7294 . . 3 𝑋 ∈ V → (𝑋m X𝑥𝐼 𝑋) = ∅)
1714, 16eqtr4d 2781 . 2 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
1810, 17pm2.61d1 180 1 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  (class class class)co 7255  m cmap 8573  Xcixp 8643  0cc0 10802  0cn0 12163  ..^cfzo 13311  -aryF cnaryf 45860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ixp 8644  df-naryf 45861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator