| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfvalixp | Structured version Visualization version GIF version | ||
| Description: The set of the n-ary (endo)functions on a class 𝑋 expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024.) |
| Ref | Expression |
|---|---|
| naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| naryfvalixp | ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naryfval.i | . . . . . 6 ⊢ 𝐼 = (0..^𝑁) | |
| 2 | 1 | naryfval 48668 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
| 4 | 1 | ovexi 7380 | . . . . . . 7 ⊢ 𝐼 ∈ V |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝐼 ∈ V) |
| 6 | ixpconstg 8830 | . . . . . 6 ⊢ ((𝐼 ∈ V ∧ 𝑋 ∈ V) → X𝑥 ∈ 𝐼 𝑋 = (𝑋 ↑m 𝐼)) | |
| 7 | 5, 6 | sylan 580 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → X𝑥 ∈ 𝐼 𝑋 = (𝑋 ↑m 𝐼)) |
| 8 | 7 | oveq2d 7362 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
| 9 | 3, 8 | eqtr4d 2769 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋)) |
| 10 | 9 | ex 412 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋))) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
| 12 | df-naryf 48667 | . . . . 5 ⊢ -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑛 ↑m (0..^𝑥)))) | |
| 13 | 12 | mpondm0 7586 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅) |
| 14 | 11, 13 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅) |
| 15 | reldmmap 8759 | . . . 4 ⊢ Rel dom ↑m | |
| 16 | 15 | ovprc1 7385 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋) = ∅) |
| 17 | 14, 16 | eqtr4d 2769 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋)) |
| 18 | 10, 17 | pm2.61d1 180 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 (class class class)co 7346 ↑m cmap 8750 Xcixp 8821 0cc0 11006 ℕ0cn0 12381 ..^cfzo 13554 -aryF cnaryf 48666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-ixp 8822 df-naryf 48667 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |