Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryfvalixp Structured version   Visualization version   GIF version

Theorem naryfvalixp 48614
Description: The set of the n-ary (endo)functions on a class 𝑋 expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryfvalixp (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑁   𝑥,𝑋

Proof of Theorem naryfvalixp
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 naryfval.i . . . . . 6 𝐼 = (0..^𝑁)
21naryfval 48613 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
32adantr 480 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
41ovexi 7383 . . . . . . 7 𝐼 ∈ V
54a1i 11 . . . . . 6 (𝑁 ∈ ℕ0𝐼 ∈ V)
6 ixpconstg 8833 . . . . . 6 ((𝐼 ∈ V ∧ 𝑋 ∈ V) → X𝑥𝐼 𝑋 = (𝑋m 𝐼))
75, 6sylan 580 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ V) → X𝑥𝐼 𝑋 = (𝑋m 𝐼))
87oveq2d 7365 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑋m X𝑥𝐼 𝑋) = (𝑋m (𝑋m 𝐼)))
93, 8eqtr4d 2767 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
109ex 412 . 2 (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋)))
11 simpr 484 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → 𝑋 ∈ V)
12 df-naryf 48612 . . . . 5 -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛m (𝑛m (0..^𝑥))))
1312mpondm0 7589 . . . 4 (¬ (𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅)
1411, 13nsyl5 159 . . 3 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅)
15 reldmmap 8762 . . . 4 Rel dom ↑m
1615ovprc1 7388 . . 3 𝑋 ∈ V → (𝑋m X𝑥𝐼 𝑋) = ∅)
1714, 16eqtr4d 2767 . 2 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
1810, 17pm2.61d1 180 1 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284  (class class class)co 7349  m cmap 8753  Xcixp 8824  0cc0 11009  0cn0 12384  ..^cfzo 13557  -aryF cnaryf 48611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-ixp 8825  df-naryf 48612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator