Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryfvalixp Structured version   Visualization version   GIF version

Theorem naryfvalixp 45975
Description: The set of the n-ary (endo)functions on a class 𝑋 expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryfvalixp (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑁   𝑥,𝑋

Proof of Theorem naryfvalixp
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 naryfval.i . . . . . 6 𝐼 = (0..^𝑁)
21naryfval 45974 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
32adantr 481 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
41ovexi 7309 . . . . . . 7 𝐼 ∈ V
54a1i 11 . . . . . 6 (𝑁 ∈ ℕ0𝐼 ∈ V)
6 ixpconstg 8694 . . . . . 6 ((𝐼 ∈ V ∧ 𝑋 ∈ V) → X𝑥𝐼 𝑋 = (𝑋m 𝐼))
75, 6sylan 580 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ V) → X𝑥𝐼 𝑋 = (𝑋m 𝐼))
87oveq2d 7291 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑋m X𝑥𝐼 𝑋) = (𝑋m (𝑋m 𝐼)))
93, 8eqtr4d 2781 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
109ex 413 . 2 (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋)))
11 simpr 485 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → 𝑋 ∈ V)
12 df-naryf 45973 . . . . 5 -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛m (𝑛m (0..^𝑥))))
1312mpondm0 7510 . . . 4 (¬ (𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅)
1411, 13nsyl5 159 . . 3 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅)
15 reldmmap 8624 . . . 4 Rel dom ↑m
1615ovprc1 7314 . . 3 𝑋 ∈ V → (𝑋m X𝑥𝐼 𝑋) = ∅)
1714, 16eqtr4d 2781 . 2 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
1810, 17pm2.61d1 180 1 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  (class class class)co 7275  m cmap 8615  Xcixp 8685  0cc0 10871  0cn0 12233  ..^cfzo 13382  -aryF cnaryf 45972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-ixp 8686  df-naryf 45973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator