Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryfvalixp Structured version   Visualization version   GIF version

Theorem naryfvalixp 48618
Description: The set of the n-ary (endo)functions on a class 𝑋 expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryfvalixp (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑁   𝑥,𝑋

Proof of Theorem naryfvalixp
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 naryfval.i . . . . . 6 𝐼 = (0..^𝑁)
21naryfval 48617 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
32adantr 480 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
41ovexi 7421 . . . . . . 7 𝐼 ∈ V
54a1i 11 . . . . . 6 (𝑁 ∈ ℕ0𝐼 ∈ V)
6 ixpconstg 8879 . . . . . 6 ((𝐼 ∈ V ∧ 𝑋 ∈ V) → X𝑥𝐼 𝑋 = (𝑋m 𝐼))
75, 6sylan 580 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ V) → X𝑥𝐼 𝑋 = (𝑋m 𝐼))
87oveq2d 7403 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑋m X𝑥𝐼 𝑋) = (𝑋m (𝑋m 𝐼)))
93, 8eqtr4d 2767 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
109ex 412 . 2 (𝑁 ∈ ℕ0 → (𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋)))
11 simpr 484 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → 𝑋 ∈ V)
12 df-naryf 48616 . . . . 5 -aryF = (𝑥 ∈ ℕ0, 𝑛 ∈ V ↦ (𝑛m (𝑛m (0..^𝑥))))
1312mpondm0 7629 . . . 4 (¬ (𝑁 ∈ ℕ0𝑋 ∈ V) → (𝑁-aryF 𝑋) = ∅)
1411, 13nsyl5 159 . . 3 𝑋 ∈ V → (𝑁-aryF 𝑋) = ∅)
15 reldmmap 8808 . . . 4 Rel dom ↑m
1615ovprc1 7426 . . 3 𝑋 ∈ V → (𝑋m X𝑥𝐼 𝑋) = ∅)
1714, 16eqtr4d 2767 . 2 𝑋 ∈ V → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
1810, 17pm2.61d1 180 1 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m X𝑥𝐼 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  (class class class)co 7387  m cmap 8799  Xcixp 8870  0cc0 11068  0cn0 12442  ..^cfzo 13615  -aryF cnaryf 48615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ixp 8871  df-naryf 48616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator