Step | Hyp | Ref
| Expression |
1 | | anass 469 |
. 2
⊢ (((𝑊 ∈ (NrmGrp ∩ LMod)
∧ 𝐹 ∈ NrmRing)
∧ ∀𝑥 ∈
𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦))) ↔ (𝑊 ∈ (NrmGrp ∩ LMod) ∧ (𝐹 ∈ NrmRing ∧
∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦))))) |
2 | | df-3an 1088 |
. . . 4
⊢ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈
NrmRing)) |
3 | | elin 3908 |
. . . . 5
⊢ (𝑊 ∈ (NrmGrp ∩ LMod)
↔ (𝑊 ∈ NrmGrp
∧ 𝑊 ∈
LMod)) |
4 | 3 | anbi1i 624 |
. . . 4
⊢ ((𝑊 ∈ (NrmGrp ∩ LMod)
∧ 𝐹 ∈ NrmRing)
↔ ((𝑊 ∈ NrmGrp
∧ 𝑊 ∈ LMod) ∧
𝐹 ∈
NrmRing)) |
5 | 2, 4 | bitr4i 277 |
. . 3
⊢ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ (𝑊 ∈ (NrmGrp ∩ LMod)
∧ 𝐹 ∈
NrmRing)) |
6 | 5 | anbi1i 624 |
. 2
⊢ (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧
∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦))) ↔ ((𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ∧
∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)))) |
7 | | fvexd 6786 |
. . . 4
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V) |
8 | | id 22 |
. . . . . . 7
⊢ (𝑓 = (Scalar‘𝑤) → 𝑓 = (Scalar‘𝑤)) |
9 | | fveq2 6771 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
10 | | isnlm.f |
. . . . . . . 8
⊢ 𝐹 = (Scalar‘𝑊) |
11 | 9, 10 | eqtr4di 2798 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
12 | 8, 11 | sylan9eqr 2802 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → 𝑓 = 𝐹) |
13 | 12 | eleq1d 2825 |
. . . . 5
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (𝑓 ∈ NrmRing ↔ 𝐹 ∈ NrmRing)) |
14 | 12 | fveq2d 6775 |
. . . . . . 7
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = (Base‘𝐹)) |
15 | | isnlm.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝐹) |
16 | 14, 15 | eqtr4di 2798 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = 𝐾) |
17 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → 𝑤 = 𝑊) |
18 | 17 | fveq2d 6775 |
. . . . . . . 8
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (Base‘𝑤) = (Base‘𝑊)) |
19 | | isnlm.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
20 | 18, 19 | eqtr4di 2798 |
. . . . . . 7
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (Base‘𝑤) = 𝑉) |
21 | 17 | fveq2d 6775 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (norm‘𝑤) = (norm‘𝑊)) |
22 | | isnlm.n |
. . . . . . . . . 10
⊢ 𝑁 = (norm‘𝑊) |
23 | 21, 22 | eqtr4di 2798 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (norm‘𝑤) = 𝑁) |
24 | 17 | fveq2d 6775 |
. . . . . . . . . . 11
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
25 | | isnlm.s |
. . . . . . . . . . 11
⊢ · = (
·𝑠 ‘𝑊) |
26 | 24, 25 | eqtr4di 2798 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (
·𝑠 ‘𝑤) = · ) |
27 | 26 | oveqd 7288 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (𝑥( ·𝑠
‘𝑤)𝑦) = (𝑥 · 𝑦)) |
28 | 23, 27 | fveq12d 6778 |
. . . . . . . 8
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → ((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (𝑁‘(𝑥 · 𝑦))) |
29 | 12 | fveq2d 6775 |
. . . . . . . . . . 11
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (norm‘𝑓) = (norm‘𝐹)) |
30 | | isnlm.a |
. . . . . . . . . . 11
⊢ 𝐴 = (norm‘𝐹) |
31 | 29, 30 | eqtr4di 2798 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (norm‘𝑓) = 𝐴) |
32 | 31 | fveq1d 6773 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → ((norm‘𝑓)‘𝑥) = (𝐴‘𝑥)) |
33 | 23 | fveq1d 6773 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → ((norm‘𝑤)‘𝑦) = (𝑁‘𝑦)) |
34 | 32, 33 | oveq12d 7289 |
. . . . . . . 8
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦))) |
35 | 28, 34 | eqeq12d 2756 |
. . . . . . 7
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)))) |
36 | 20, 35 | raleqbidv 3335 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)))) |
37 | 16, 36 | raleqbidv 3335 |
. . . . 5
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)))) |
38 | 13, 37 | anbi12d 631 |
. . . 4
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → ((𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦))) ↔ (𝐹 ∈ NrmRing ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦))))) |
39 | 7, 38 | sbcied 3765 |
. . 3
⊢ (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦))) ↔ (𝐹 ∈ NrmRing ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦))))) |
40 | | df-nlm 23740 |
. . 3
⊢ NrmMod =
{𝑤 ∈ (NrmGrp ∩
LMod) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)))} |
41 | 39, 40 | elrab2 3629 |
. 2
⊢ (𝑊 ∈ NrmMod ↔ (𝑊 ∈ (NrmGrp ∩ LMod)
∧ (𝐹 ∈ NrmRing
∧ ∀𝑥 ∈
𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦))))) |
42 | 1, 6, 41 | 3bitr4ri 304 |
1
⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧
∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴‘𝑥) · (𝑁‘𝑦)))) |