MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnlm Structured version   Visualization version   GIF version

Theorem isnlm 23281
Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnlm.v 𝑉 = (Base‘𝑊)
isnlm.n 𝑁 = (norm‘𝑊)
isnlm.s · = ( ·𝑠𝑊)
isnlm.f 𝐹 = (Scalar‘𝑊)
isnlm.k 𝐾 = (Base‘𝐹)
isnlm.a 𝐴 = (norm‘𝐹)
Assertion
Ref Expression
isnlm (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑁,𝑦   𝑥,𝑉,𝑦   𝑥,𝐾   𝑥,𝑊,𝑦   𝑥, · ,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐾(𝑦)

Proof of Theorem isnlm
Dummy variables 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 472 . 2 (((𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))) ↔ (𝑊 ∈ (NrmGrp ∩ LMod) ∧ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
2 df-3an 1086 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ NrmRing))
3 elin 3897 . . . . 5 (𝑊 ∈ (NrmGrp ∩ LMod) ↔ (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod))
43anbi1i 626 . . . 4 ((𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ NrmRing))
52, 4bitr4i 281 . . 3 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ (𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing))
65anbi1i 626 . 2 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))) ↔ ((𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
7 fvexd 6660 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
8 id 22 . . . . . . 7 (𝑓 = (Scalar‘𝑤) → 𝑓 = (Scalar‘𝑤))
9 fveq2 6645 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
10 isnlm.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
119, 10eqtr4di 2851 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
128, 11sylan9eqr 2855 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → 𝑓 = 𝐹)
1312eleq1d 2874 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (𝑓 ∈ NrmRing ↔ 𝐹 ∈ NrmRing))
1412fveq2d 6649 . . . . . . 7 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = (Base‘𝐹))
15 isnlm.k . . . . . . 7 𝐾 = (Base‘𝐹)
1614, 15eqtr4di 2851 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = 𝐾)
17 simpl 486 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → 𝑤 = 𝑊)
1817fveq2d 6649 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑤) = (Base‘𝑊))
19 isnlm.v . . . . . . . 8 𝑉 = (Base‘𝑊)
2018, 19eqtr4di 2851 . . . . . . 7 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑤) = 𝑉)
2117fveq2d 6649 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑤) = (norm‘𝑊))
22 isnlm.n . . . . . . . . . 10 𝑁 = (norm‘𝑊)
2321, 22eqtr4di 2851 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑤) = 𝑁)
2417fveq2d 6649 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ( ·𝑠𝑤) = ( ·𝑠𝑊))
25 isnlm.s . . . . . . . . . . 11 · = ( ·𝑠𝑊)
2624, 25eqtr4di 2851 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ( ·𝑠𝑤) = · )
2726oveqd 7152 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
2823, 27fveq12d 6652 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (𝑁‘(𝑥 · 𝑦)))
2912fveq2d 6649 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑓) = (norm‘𝐹))
30 isnlm.a . . . . . . . . . . 11 𝐴 = (norm‘𝐹)
3129, 30eqtr4di 2851 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑓) = 𝐴)
3231fveq1d 6647 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((norm‘𝑓)‘𝑥) = (𝐴𝑥))
3323fveq1d 6647 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((norm‘𝑤)‘𝑦) = (𝑁𝑦))
3432, 33oveq12d 7153 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))
3528, 34eqeq12d 2814 . . . . . . 7 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
3620, 35raleqbidv 3354 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ ∀𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
3716, 36raleqbidv 3354 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
3813, 37anbi12d 633 . . . 4 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦))) ↔ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
397, 38sbcied 3762 . . 3 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦))) ↔ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
40 df-nlm 23193 . . 3 NrmMod = {𝑤 ∈ (NrmGrp ∩ LMod) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)))}
4139, 40elrab2 3631 . 2 (𝑊 ∈ NrmMod ↔ (𝑊 ∈ (NrmGrp ∩ LMod) ∧ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
421, 6, 413bitr4ri 307 1 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  [wsbc 3720  cin 3880  cfv 6324  (class class class)co 7135   · cmul 10531  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  LModclmod 19627  normcnm 23183  NrmGrpcngp 23184  NrmRingcnrg 23186  NrmModcnlm 23187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-nlm 23193
This theorem is referenced by:  nmvs  23282  nlmngp  23283  nlmlmod  23284  nlmnrg  23285  sranlm  23290  lssnlm  23307  isncvsngp  23754  tcphcph  23841  cnzh  31321  rezh  31322
  Copyright terms: Public domain W3C validator