Step | Hyp | Ref
| Expression |
1 | | anass 469 |
. 2
β’ (((π β (NrmGrp β© LMod)
β§ πΉ β NrmRing)
β§ βπ₯ β
πΎ βπ¦ β π (πβ(π₯ Β· π¦)) = ((π΄βπ₯) Β· (πβπ¦))) β (π β (NrmGrp β© LMod) β§ (πΉ β NrmRing β§
βπ₯ β πΎ βπ¦ β π (πβ(π₯ Β· π¦)) = ((π΄βπ₯) Β· (πβπ¦))))) |
2 | | df-3an 1089 |
. . . 4
β’ ((π β NrmGrp β§ π β LMod β§ πΉ β NrmRing) β ((π β NrmGrp β§ π β LMod) β§ πΉ β
NrmRing)) |
3 | | elin 3963 |
. . . . 5
β’ (π β (NrmGrp β© LMod)
β (π β NrmGrp
β§ π β
LMod)) |
4 | 3 | anbi1i 624 |
. . . 4
β’ ((π β (NrmGrp β© LMod)
β§ πΉ β NrmRing)
β ((π β NrmGrp
β§ π β LMod) β§
πΉ β
NrmRing)) |
5 | 2, 4 | bitr4i 277 |
. . 3
β’ ((π β NrmGrp β§ π β LMod β§ πΉ β NrmRing) β (π β (NrmGrp β© LMod)
β§ πΉ β
NrmRing)) |
6 | 5 | anbi1i 624 |
. 2
β’ (((π β NrmGrp β§ π β LMod β§ πΉ β NrmRing) β§
βπ₯ β πΎ βπ¦ β π (πβ(π₯ Β· π¦)) = ((π΄βπ₯) Β· (πβπ¦))) β ((π β (NrmGrp β© LMod) β§ πΉ β NrmRing) β§
βπ₯ β πΎ βπ¦ β π (πβ(π₯ Β· π¦)) = ((π΄βπ₯) Β· (πβπ¦)))) |
7 | | fvexd 6903 |
. . . 4
β’ (π€ = π β (Scalarβπ€) β V) |
8 | | id 22 |
. . . . . . 7
β’ (π = (Scalarβπ€) β π = (Scalarβπ€)) |
9 | | fveq2 6888 |
. . . . . . . 8
β’ (π€ = π β (Scalarβπ€) = (Scalarβπ)) |
10 | | isnlm.f |
. . . . . . . 8
β’ πΉ = (Scalarβπ) |
11 | 9, 10 | eqtr4di 2790 |
. . . . . . 7
β’ (π€ = π β (Scalarβπ€) = πΉ) |
12 | 8, 11 | sylan9eqr 2794 |
. . . . . 6
β’ ((π€ = π β§ π = (Scalarβπ€)) β π = πΉ) |
13 | 12 | eleq1d 2818 |
. . . . 5
β’ ((π€ = π β§ π = (Scalarβπ€)) β (π β NrmRing β πΉ β NrmRing)) |
14 | 12 | fveq2d 6892 |
. . . . . . 7
β’ ((π€ = π β§ π = (Scalarβπ€)) β (Baseβπ) = (BaseβπΉ)) |
15 | | isnlm.k |
. . . . . . 7
β’ πΎ = (BaseβπΉ) |
16 | 14, 15 | eqtr4di 2790 |
. . . . . 6
β’ ((π€ = π β§ π = (Scalarβπ€)) β (Baseβπ) = πΎ) |
17 | | simpl 483 |
. . . . . . . . 9
β’ ((π€ = π β§ π = (Scalarβπ€)) β π€ = π) |
18 | 17 | fveq2d 6892 |
. . . . . . . 8
β’ ((π€ = π β§ π = (Scalarβπ€)) β (Baseβπ€) = (Baseβπ)) |
19 | | isnlm.v |
. . . . . . . 8
β’ π = (Baseβπ) |
20 | 18, 19 | eqtr4di 2790 |
. . . . . . 7
β’ ((π€ = π β§ π = (Scalarβπ€)) β (Baseβπ€) = π) |
21 | 17 | fveq2d 6892 |
. . . . . . . . . 10
β’ ((π€ = π β§ π = (Scalarβπ€)) β (normβπ€) = (normβπ)) |
22 | | isnlm.n |
. . . . . . . . . 10
β’ π = (normβπ) |
23 | 21, 22 | eqtr4di 2790 |
. . . . . . . . 9
β’ ((π€ = π β§ π = (Scalarβπ€)) β (normβπ€) = π) |
24 | 17 | fveq2d 6892 |
. . . . . . . . . . 11
β’ ((π€ = π β§ π = (Scalarβπ€)) β (
Β·π βπ€) = ( Β·π
βπ)) |
25 | | isnlm.s |
. . . . . . . . . . 11
β’ Β· = (
Β·π βπ) |
26 | 24, 25 | eqtr4di 2790 |
. . . . . . . . . 10
β’ ((π€ = π β§ π = (Scalarβπ€)) β (
Β·π βπ€) = Β· ) |
27 | 26 | oveqd 7422 |
. . . . . . . . 9
β’ ((π€ = π β§ π = (Scalarβπ€)) β (π₯( Β·π
βπ€)π¦) = (π₯ Β· π¦)) |
28 | 23, 27 | fveq12d 6895 |
. . . . . . . 8
β’ ((π€ = π β§ π = (Scalarβπ€)) β ((normβπ€)β(π₯( Β·π
βπ€)π¦)) = (πβ(π₯ Β· π¦))) |
29 | 12 | fveq2d 6892 |
. . . . . . . . . . 11
β’ ((π€ = π β§ π = (Scalarβπ€)) β (normβπ) = (normβπΉ)) |
30 | | isnlm.a |
. . . . . . . . . . 11
β’ π΄ = (normβπΉ) |
31 | 29, 30 | eqtr4di 2790 |
. . . . . . . . . 10
β’ ((π€ = π β§ π = (Scalarβπ€)) β (normβπ) = π΄) |
32 | 31 | fveq1d 6890 |
. . . . . . . . 9
β’ ((π€ = π β§ π = (Scalarβπ€)) β ((normβπ)βπ₯) = (π΄βπ₯)) |
33 | 23 | fveq1d 6890 |
. . . . . . . . 9
β’ ((π€ = π β§ π = (Scalarβπ€)) β ((normβπ€)βπ¦) = (πβπ¦)) |
34 | 32, 33 | oveq12d 7423 |
. . . . . . . 8
β’ ((π€ = π β§ π = (Scalarβπ€)) β (((normβπ)βπ₯) Β· ((normβπ€)βπ¦)) = ((π΄βπ₯) Β· (πβπ¦))) |
35 | 28, 34 | eqeq12d 2748 |
. . . . . . 7
β’ ((π€ = π β§ π = (Scalarβπ€)) β (((normβπ€)β(π₯( Β·π
βπ€)π¦)) = (((normβπ)βπ₯) Β· ((normβπ€)βπ¦)) β (πβ(π₯ Β· π¦)) = ((π΄βπ₯) Β· (πβπ¦)))) |
36 | 20, 35 | raleqbidv 3342 |
. . . . . 6
β’ ((π€ = π β§ π = (Scalarβπ€)) β (βπ¦ β (Baseβπ€)((normβπ€)β(π₯( Β·π
βπ€)π¦)) = (((normβπ)βπ₯) Β· ((normβπ€)βπ¦)) β βπ¦ β π (πβ(π₯ Β· π¦)) = ((π΄βπ₯) Β· (πβπ¦)))) |
37 | 16, 36 | raleqbidv 3342 |
. . . . 5
β’ ((π€ = π β§ π = (Scalarβπ€)) β (βπ₯ β (Baseβπ)βπ¦ β (Baseβπ€)((normβπ€)β(π₯( Β·π
βπ€)π¦)) = (((normβπ)βπ₯) Β· ((normβπ€)βπ¦)) β βπ₯ β πΎ βπ¦ β π (πβ(π₯ Β· π¦)) = ((π΄βπ₯) Β· (πβπ¦)))) |
38 | 13, 37 | anbi12d 631 |
. . . 4
β’ ((π€ = π β§ π = (Scalarβπ€)) β ((π β NrmRing β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ€)((normβπ€)β(π₯( Β·π
βπ€)π¦)) = (((normβπ)βπ₯) Β· ((normβπ€)βπ¦))) β (πΉ β NrmRing β§ βπ₯ β πΎ βπ¦ β π (πβ(π₯ Β· π¦)) = ((π΄βπ₯) Β· (πβπ¦))))) |
39 | 7, 38 | sbcied 3821 |
. . 3
β’ (π€ = π β ([(Scalarβπ€) / π](π β NrmRing β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ€)((normβπ€)β(π₯( Β·π
βπ€)π¦)) = (((normβπ)βπ₯) Β· ((normβπ€)βπ¦))) β (πΉ β NrmRing β§ βπ₯ β πΎ βπ¦ β π (πβ(π₯ Β· π¦)) = ((π΄βπ₯) Β· (πβπ¦))))) |
40 | | df-nlm 24086 |
. . 3
β’ NrmMod =
{π€ β (NrmGrp β©
LMod) β£ [(Scalarβπ€) / π](π β NrmRing β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ€)((normβπ€)β(π₯( Β·π
βπ€)π¦)) = (((normβπ)βπ₯) Β· ((normβπ€)βπ¦)))} |
41 | 39, 40 | elrab2 3685 |
. 2
β’ (π β NrmMod β (π β (NrmGrp β© LMod)
β§ (πΉ β NrmRing
β§ βπ₯ β
πΎ βπ¦ β π (πβ(π₯ Β· π¦)) = ((π΄βπ₯) Β· (πβπ¦))))) |
42 | 1, 6, 41 | 3bitr4ri 303 |
1
β’ (π β NrmMod β ((π β NrmGrp β§ π β LMod β§ πΉ β NrmRing) β§
βπ₯ β πΎ βπ¦ β π (πβ(π₯ Β· π¦)) = ((π΄βπ₯) Β· (πβπ¦)))) |