MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnlm Structured version   Visualization version   GIF version

Theorem isnlm 24412
Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnlm.v 𝑉 = (Baseβ€˜π‘Š)
isnlm.n 𝑁 = (normβ€˜π‘Š)
isnlm.s Β· = ( ·𝑠 β€˜π‘Š)
isnlm.f 𝐹 = (Scalarβ€˜π‘Š)
isnlm.k 𝐾 = (Baseβ€˜πΉ)
isnlm.a 𝐴 = (normβ€˜πΉ)
Assertion
Ref Expression
isnlm (π‘Š ∈ NrmMod ↔ ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝑁,𝑦   π‘₯,𝑉,𝑦   π‘₯,𝐾   π‘₯,π‘Š,𝑦   π‘₯, Β· ,𝑦
Allowed substitution hints:   𝐹(π‘₯,𝑦)   𝐾(𝑦)

Proof of Theorem isnlm
Dummy variables 𝑀 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 469 . 2 (((π‘Š ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))) ↔ (π‘Š ∈ (NrmGrp ∩ LMod) ∧ (𝐹 ∈ NrmRing ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦)))))
2 df-3an 1089 . . . 4 ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod) ∧ 𝐹 ∈ NrmRing))
3 elin 3964 . . . . 5 (π‘Š ∈ (NrmGrp ∩ LMod) ↔ (π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod))
43anbi1i 624 . . . 4 ((π‘Š ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ↔ ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod) ∧ 𝐹 ∈ NrmRing))
52, 4bitr4i 277 . . 3 ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ (π‘Š ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing))
65anbi1i 624 . 2 (((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))) ↔ ((π‘Š ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
7 fvexd 6906 . . . 4 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) ∈ V)
8 id 22 . . . . . . 7 (𝑓 = (Scalarβ€˜π‘€) β†’ 𝑓 = (Scalarβ€˜π‘€))
9 fveq2 6891 . . . . . . . 8 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
10 isnlm.f . . . . . . . 8 𝐹 = (Scalarβ€˜π‘Š)
119, 10eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐹)
128, 11sylan9eqr 2794 . . . . . 6 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ 𝑓 = 𝐹)
1312eleq1d 2818 . . . . 5 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (𝑓 ∈ NrmRing ↔ 𝐹 ∈ NrmRing))
1412fveq2d 6895 . . . . . . 7 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (Baseβ€˜π‘“) = (Baseβ€˜πΉ))
15 isnlm.k . . . . . . 7 𝐾 = (Baseβ€˜πΉ)
1614, 15eqtr4di 2790 . . . . . 6 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (Baseβ€˜π‘“) = 𝐾)
17 simpl 483 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ 𝑀 = π‘Š)
1817fveq2d 6895 . . . . . . . 8 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
19 isnlm.v . . . . . . . 8 𝑉 = (Baseβ€˜π‘Š)
2018, 19eqtr4di 2790 . . . . . . 7 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (Baseβ€˜π‘€) = 𝑉)
2117fveq2d 6895 . . . . . . . . . 10 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (normβ€˜π‘€) = (normβ€˜π‘Š))
22 isnlm.n . . . . . . . . . 10 𝑁 = (normβ€˜π‘Š)
2321, 22eqtr4di 2790 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (normβ€˜π‘€) = 𝑁)
2417fveq2d 6895 . . . . . . . . . . 11 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘Š))
25 isnlm.s . . . . . . . . . . 11 Β· = ( ·𝑠 β€˜π‘Š)
2624, 25eqtr4di 2790 . . . . . . . . . 10 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ( ·𝑠 β€˜π‘€) = Β· )
2726oveqd 7428 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (π‘₯( ·𝑠 β€˜π‘€)𝑦) = (π‘₯ Β· 𝑦))
2823, 27fveq12d 6898 . . . . . . . 8 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (π‘β€˜(π‘₯ Β· 𝑦)))
2912fveq2d 6895 . . . . . . . . . . 11 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (normβ€˜π‘“) = (normβ€˜πΉ))
30 isnlm.a . . . . . . . . . . 11 𝐴 = (normβ€˜πΉ)
3129, 30eqtr4di 2790 . . . . . . . . . 10 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (normβ€˜π‘“) = 𝐴)
3231fveq1d 6893 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ((normβ€˜π‘“)β€˜π‘₯) = (π΄β€˜π‘₯))
3323fveq1d 6893 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ((normβ€˜π‘€)β€˜π‘¦) = (π‘β€˜π‘¦))
3432, 33oveq12d 7429 . . . . . . . 8 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦)))
3528, 34eqeq12d 2748 . . . . . . 7 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)) ↔ (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
3620, 35raleqbidv 3342 . . . . . 6 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)) ↔ βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
3716, 36raleqbidv 3342 . . . . 5 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
3813, 37anbi12d 631 . . . 4 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ((𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦))) ↔ (𝐹 ∈ NrmRing ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦)))))
397, 38sbcied 3822 . . 3 (𝑀 = π‘Š β†’ ([(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦))) ↔ (𝐹 ∈ NrmRing ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦)))))
40 df-nlm 24315 . . 3 NrmMod = {𝑀 ∈ (NrmGrp ∩ LMod) ∣ [(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)))}
4139, 40elrab2 3686 . 2 (π‘Š ∈ NrmMod ↔ (π‘Š ∈ (NrmGrp ∩ LMod) ∧ (𝐹 ∈ NrmRing ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦)))))
421, 6, 413bitr4ri 303 1 (π‘Š ∈ NrmMod ↔ ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474  [wsbc 3777   ∩ cin 3947  β€˜cfv 6543  (class class class)co 7411   Β· cmul 11117  Basecbs 17148  Scalarcsca 17204   ·𝑠 cvsca 17205  LModclmod 20614  normcnm 24305  NrmGrpcngp 24306  NrmRingcnrg 24308  NrmModcnlm 24309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414  df-nlm 24315
This theorem is referenced by:  nmvs  24413  nlmngp  24414  nlmlmod  24415  nlmnrg  24416  sranlm  24421  lssnlm  24438  isncvsngp  24890  tcphcph  24978  cnzh  33236  rezh  33237
  Copyright terms: Public domain W3C validator