MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnlm Structured version   Visualization version   GIF version

Theorem isnlm 24183
Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnlm.v 𝑉 = (Baseβ€˜π‘Š)
isnlm.n 𝑁 = (normβ€˜π‘Š)
isnlm.s Β· = ( ·𝑠 β€˜π‘Š)
isnlm.f 𝐹 = (Scalarβ€˜π‘Š)
isnlm.k 𝐾 = (Baseβ€˜πΉ)
isnlm.a 𝐴 = (normβ€˜πΉ)
Assertion
Ref Expression
isnlm (π‘Š ∈ NrmMod ↔ ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝑁,𝑦   π‘₯,𝑉,𝑦   π‘₯,𝐾   π‘₯,π‘Š,𝑦   π‘₯, Β· ,𝑦
Allowed substitution hints:   𝐹(π‘₯,𝑦)   𝐾(𝑦)

Proof of Theorem isnlm
Dummy variables 𝑀 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 469 . 2 (((π‘Š ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))) ↔ (π‘Š ∈ (NrmGrp ∩ LMod) ∧ (𝐹 ∈ NrmRing ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦)))))
2 df-3an 1089 . . . 4 ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod) ∧ 𝐹 ∈ NrmRing))
3 elin 3963 . . . . 5 (π‘Š ∈ (NrmGrp ∩ LMod) ↔ (π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod))
43anbi1i 624 . . . 4 ((π‘Š ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ↔ ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod) ∧ 𝐹 ∈ NrmRing))
52, 4bitr4i 277 . . 3 ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ (π‘Š ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing))
65anbi1i 624 . 2 (((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))) ↔ ((π‘Š ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
7 fvexd 6903 . . . 4 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) ∈ V)
8 id 22 . . . . . . 7 (𝑓 = (Scalarβ€˜π‘€) β†’ 𝑓 = (Scalarβ€˜π‘€))
9 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
10 isnlm.f . . . . . . . 8 𝐹 = (Scalarβ€˜π‘Š)
119, 10eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐹)
128, 11sylan9eqr 2794 . . . . . 6 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ 𝑓 = 𝐹)
1312eleq1d 2818 . . . . 5 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (𝑓 ∈ NrmRing ↔ 𝐹 ∈ NrmRing))
1412fveq2d 6892 . . . . . . 7 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (Baseβ€˜π‘“) = (Baseβ€˜πΉ))
15 isnlm.k . . . . . . 7 𝐾 = (Baseβ€˜πΉ)
1614, 15eqtr4di 2790 . . . . . 6 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (Baseβ€˜π‘“) = 𝐾)
17 simpl 483 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ 𝑀 = π‘Š)
1817fveq2d 6892 . . . . . . . 8 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
19 isnlm.v . . . . . . . 8 𝑉 = (Baseβ€˜π‘Š)
2018, 19eqtr4di 2790 . . . . . . 7 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (Baseβ€˜π‘€) = 𝑉)
2117fveq2d 6892 . . . . . . . . . 10 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (normβ€˜π‘€) = (normβ€˜π‘Š))
22 isnlm.n . . . . . . . . . 10 𝑁 = (normβ€˜π‘Š)
2321, 22eqtr4di 2790 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (normβ€˜π‘€) = 𝑁)
2417fveq2d 6892 . . . . . . . . . . 11 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘Š))
25 isnlm.s . . . . . . . . . . 11 Β· = ( ·𝑠 β€˜π‘Š)
2624, 25eqtr4di 2790 . . . . . . . . . 10 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ( ·𝑠 β€˜π‘€) = Β· )
2726oveqd 7422 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (π‘₯( ·𝑠 β€˜π‘€)𝑦) = (π‘₯ Β· 𝑦))
2823, 27fveq12d 6895 . . . . . . . 8 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (π‘β€˜(π‘₯ Β· 𝑦)))
2912fveq2d 6892 . . . . . . . . . . 11 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (normβ€˜π‘“) = (normβ€˜πΉ))
30 isnlm.a . . . . . . . . . . 11 𝐴 = (normβ€˜πΉ)
3129, 30eqtr4di 2790 . . . . . . . . . 10 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (normβ€˜π‘“) = 𝐴)
3231fveq1d 6890 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ((normβ€˜π‘“)β€˜π‘₯) = (π΄β€˜π‘₯))
3323fveq1d 6890 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ((normβ€˜π‘€)β€˜π‘¦) = (π‘β€˜π‘¦))
3432, 33oveq12d 7423 . . . . . . . 8 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦)))
3528, 34eqeq12d 2748 . . . . . . 7 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)) ↔ (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
3620, 35raleqbidv 3342 . . . . . 6 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)) ↔ βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
3716, 36raleqbidv 3342 . . . . 5 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
3813, 37anbi12d 631 . . . 4 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ((𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦))) ↔ (𝐹 ∈ NrmRing ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦)))))
397, 38sbcied 3821 . . 3 (𝑀 = π‘Š β†’ ([(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦))) ↔ (𝐹 ∈ NrmRing ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦)))))
40 df-nlm 24086 . . 3 NrmMod = {𝑀 ∈ (NrmGrp ∩ LMod) ∣ [(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)))}
4139, 40elrab2 3685 . 2 (π‘Š ∈ NrmMod ↔ (π‘Š ∈ (NrmGrp ∩ LMod) ∧ (𝐹 ∈ NrmRing ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦)))))
421, 6, 413bitr4ri 303 1 (π‘Š ∈ NrmMod ↔ ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝑉 (π‘β€˜(π‘₯ Β· 𝑦)) = ((π΄β€˜π‘₯) Β· (π‘β€˜π‘¦))))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474  [wsbc 3776   ∩ cin 3946  β€˜cfv 6540  (class class class)co 7405   Β· cmul 11111  Basecbs 17140  Scalarcsca 17196   ·𝑠 cvsca 17197  LModclmod 20463  normcnm 24076  NrmGrpcngp 24077  NrmRingcnrg 24079  NrmModcnlm 24080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-ov 7408  df-nlm 24086
This theorem is referenced by:  nmvs  24184  nlmngp  24185  nlmlmod  24186  nlmnrg  24187  sranlm  24192  lssnlm  24209  isncvsngp  24657  tcphcph  24745  cnzh  32938  rezh  32939
  Copyright terms: Public domain W3C validator