HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-oc Structured version   Visualization version   GIF version

Definition df-oc 31280
Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 31308 and chocvali 31327 for its value. Textbooks usually denote this unary operation with the symbol as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-oc ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-oc
StepHypRef Expression
1 cort 30958 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 30947 . . . 4 class
43cpw 4604 . . 3 class 𝒫 ℋ
5 vy . . . . . . . 8 setvar 𝑦
65cv 1535 . . . . . . 7 class 𝑦
7 vz . . . . . . . 8 setvar 𝑧
87cv 1535 . . . . . . 7 class 𝑧
9 csp 30950 . . . . . . 7 class ·ih
106, 8, 9co 7430 . . . . . 6 class (𝑦 ·ih 𝑧)
11 cc0 11152 . . . . . 6 class 0
1210, 11wceq 1536 . . . . 5 wff (𝑦 ·ih 𝑧) = 0
132cv 1535 . . . . 5 class 𝑥
1412, 7, 13wral 3058 . . . 4 wff 𝑧𝑥 (𝑦 ·ih 𝑧) = 0
1514, 5, 3crab 3432 . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0}
162, 4, 15cmpt 5230 . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
171, 16wceq 1536 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
Colors of variables: wff setvar class
This definition is referenced by:  ocval  31308
  Copyright terms: Public domain W3C validator