Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-oc | Structured version Visualization version GIF version |
Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 29621 and chocvali 29640 for its value. Textbooks usually denote this unary operation with the symbol ⊥ as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) ⊥ rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-oc | ⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cort 29271 | . 2 class ⊥ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | chba 29260 | . . . 4 class ℋ | |
4 | 3 | cpw 4538 | . . 3 class 𝒫 ℋ |
5 | vy | . . . . . . . 8 setvar 𝑦 | |
6 | 5 | cv 1540 | . . . . . . 7 class 𝑦 |
7 | vz | . . . . . . . 8 setvar 𝑧 | |
8 | 7 | cv 1540 | . . . . . . 7 class 𝑧 |
9 | csp 29263 | . . . . . . 7 class ·ih | |
10 | 6, 8, 9 | co 7268 | . . . . . 6 class (𝑦 ·ih 𝑧) |
11 | cc0 10855 | . . . . . 6 class 0 | |
12 | 10, 11 | wceq 1541 | . . . . 5 wff (𝑦 ·ih 𝑧) = 0 |
13 | 2 | cv 1540 | . . . . 5 class 𝑥 |
14 | 12, 7, 13 | wral 3065 | . . . 4 wff ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0 |
15 | 14, 5, 3 | crab 3069 | . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0} |
16 | 2, 4, 15 | cmpt 5161 | . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
17 | 1, 16 | wceq 1541 | 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
Colors of variables: wff setvar class |
This definition is referenced by: ocval 29621 |
Copyright terms: Public domain | W3C validator |