| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-oc | Structured version Visualization version GIF version | ||
| Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 31209 and chocvali 31228 for its value. Textbooks usually denote this unary operation with the symbol ⊥ as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) ⊥ rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-oc | ⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cort 30859 | . 2 class ⊥ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | chba 30848 | . . . 4 class ℋ | |
| 4 | 3 | cpw 4563 | . . 3 class 𝒫 ℋ |
| 5 | vy | . . . . . . . 8 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . . . 7 class 𝑦 |
| 7 | vz | . . . . . . . 8 setvar 𝑧 | |
| 8 | 7 | cv 1539 | . . . . . . 7 class 𝑧 |
| 9 | csp 30851 | . . . . . . 7 class ·ih | |
| 10 | 6, 8, 9 | co 7387 | . . . . . 6 class (𝑦 ·ih 𝑧) |
| 11 | cc0 11068 | . . . . . 6 class 0 | |
| 12 | 10, 11 | wceq 1540 | . . . . 5 wff (𝑦 ·ih 𝑧) = 0 |
| 13 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 14 | 12, 7, 13 | wral 3044 | . . . 4 wff ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0 |
| 15 | 14, 5, 3 | crab 3405 | . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0} |
| 16 | 2, 4, 15 | cmpt 5188 | . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
| 17 | 1, 16 | wceq 1540 | 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ocval 31209 |
| Copyright terms: Public domain | W3C validator |