| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-oc | Structured version Visualization version GIF version | ||
| Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 31246 and chocvali 31265 for its value. Textbooks usually denote this unary operation with the symbol ⊥ as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) ⊥ rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-oc | ⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cort 30896 | . 2 class ⊥ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | chba 30885 | . . . 4 class ℋ | |
| 4 | 3 | cpw 4582 | . . 3 class 𝒫 ℋ |
| 5 | vy | . . . . . . . 8 setvar 𝑦 | |
| 6 | 5 | cv 1538 | . . . . . . 7 class 𝑦 |
| 7 | vz | . . . . . . . 8 setvar 𝑧 | |
| 8 | 7 | cv 1538 | . . . . . . 7 class 𝑧 |
| 9 | csp 30888 | . . . . . . 7 class ·ih | |
| 10 | 6, 8, 9 | co 7414 | . . . . . 6 class (𝑦 ·ih 𝑧) |
| 11 | cc0 11138 | . . . . . 6 class 0 | |
| 12 | 10, 11 | wceq 1539 | . . . . 5 wff (𝑦 ·ih 𝑧) = 0 |
| 13 | 2 | cv 1538 | . . . . 5 class 𝑥 |
| 14 | 12, 7, 13 | wral 3050 | . . . 4 wff ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0 |
| 15 | 14, 5, 3 | crab 3420 | . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0} |
| 16 | 2, 4, 15 | cmpt 5207 | . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
| 17 | 1, 16 | wceq 1539 | 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ocval 31246 |
| Copyright terms: Public domain | W3C validator |