HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-oc Structured version   Visualization version   GIF version

Definition df-oc 29614
Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 29642 and chocvali 29661 for its value. Textbooks usually denote this unary operation with the symbol as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-oc ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-oc
StepHypRef Expression
1 cort 29292 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 29281 . . . 4 class
43cpw 4533 . . 3 class 𝒫 ℋ
5 vy . . . . . . . 8 setvar 𝑦
65cv 1538 . . . . . . 7 class 𝑦
7 vz . . . . . . . 8 setvar 𝑧
87cv 1538 . . . . . . 7 class 𝑧
9 csp 29284 . . . . . . 7 class ·ih
106, 8, 9co 7275 . . . . . 6 class (𝑦 ·ih 𝑧)
11 cc0 10871 . . . . . 6 class 0
1210, 11wceq 1539 . . . . 5 wff (𝑦 ·ih 𝑧) = 0
132cv 1538 . . . . 5 class 𝑥
1412, 7, 13wral 3064 . . . 4 wff 𝑧𝑥 (𝑦 ·ih 𝑧) = 0
1514, 5, 3crab 3068 . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0}
162, 4, 15cmpt 5157 . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
171, 16wceq 1539 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
Colors of variables: wff setvar class
This definition is referenced by:  ocval  29642
  Copyright terms: Public domain W3C validator