HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-oc Structured version   Visualization version   GIF version

Definition df-oc 31238
Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 31266 and chocvali 31285 for its value. Textbooks usually denote this unary operation with the symbol as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-oc ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-oc
StepHypRef Expression
1 cort 30916 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 30905 . . . 4 class
43cpw 4580 . . 3 class 𝒫 ℋ
5 vy . . . . . . . 8 setvar 𝑦
65cv 1539 . . . . . . 7 class 𝑦
7 vz . . . . . . . 8 setvar 𝑧
87cv 1539 . . . . . . 7 class 𝑧
9 csp 30908 . . . . . . 7 class ·ih
106, 8, 9co 7410 . . . . . 6 class (𝑦 ·ih 𝑧)
11 cc0 11134 . . . . . 6 class 0
1210, 11wceq 1540 . . . . 5 wff (𝑦 ·ih 𝑧) = 0
132cv 1539 . . . . 5 class 𝑥
1412, 7, 13wral 3052 . . . 4 wff 𝑧𝑥 (𝑦 ·ih 𝑧) = 0
1514, 5, 3crab 3420 . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0}
162, 4, 15cmpt 5206 . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
171, 16wceq 1540 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
Colors of variables: wff setvar class
This definition is referenced by:  ocval  31266
  Copyright terms: Public domain W3C validator