Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-oc | Structured version Visualization version GIF version |
Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 29543 and chocvali 29562 for its value. Textbooks usually denote this unary operation with the symbol ⊥ as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) ⊥ rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-oc | ⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cort 29193 | . 2 class ⊥ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | chba 29182 | . . . 4 class ℋ | |
4 | 3 | cpw 4530 | . . 3 class 𝒫 ℋ |
5 | vy | . . . . . . . 8 setvar 𝑦 | |
6 | 5 | cv 1538 | . . . . . . 7 class 𝑦 |
7 | vz | . . . . . . . 8 setvar 𝑧 | |
8 | 7 | cv 1538 | . . . . . . 7 class 𝑧 |
9 | csp 29185 | . . . . . . 7 class ·ih | |
10 | 6, 8, 9 | co 7255 | . . . . . 6 class (𝑦 ·ih 𝑧) |
11 | cc0 10802 | . . . . . 6 class 0 | |
12 | 10, 11 | wceq 1539 | . . . . 5 wff (𝑦 ·ih 𝑧) = 0 |
13 | 2 | cv 1538 | . . . . 5 class 𝑥 |
14 | 12, 7, 13 | wral 3063 | . . . 4 wff ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0 |
15 | 14, 5, 3 | crab 3067 | . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0} |
16 | 2, 4, 15 | cmpt 5153 | . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
17 | 1, 16 | wceq 1539 | 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
Colors of variables: wff setvar class |
This definition is referenced by: ocval 29543 |
Copyright terms: Public domain | W3C validator |