![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-oc | Structured version Visualization version GIF version |
Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 31308 and chocvali 31327 for its value. Textbooks usually denote this unary operation with the symbol ⊥ as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) ⊥ rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-oc | ⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cort 30958 | . 2 class ⊥ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | chba 30947 | . . . 4 class ℋ | |
4 | 3 | cpw 4604 | . . 3 class 𝒫 ℋ |
5 | vy | . . . . . . . 8 setvar 𝑦 | |
6 | 5 | cv 1535 | . . . . . . 7 class 𝑦 |
7 | vz | . . . . . . . 8 setvar 𝑧 | |
8 | 7 | cv 1535 | . . . . . . 7 class 𝑧 |
9 | csp 30950 | . . . . . . 7 class ·ih | |
10 | 6, 8, 9 | co 7430 | . . . . . 6 class (𝑦 ·ih 𝑧) |
11 | cc0 11152 | . . . . . 6 class 0 | |
12 | 10, 11 | wceq 1536 | . . . . 5 wff (𝑦 ·ih 𝑧) = 0 |
13 | 2 | cv 1535 | . . . . 5 class 𝑥 |
14 | 12, 7, 13 | wral 3058 | . . . 4 wff ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0 |
15 | 14, 5, 3 | crab 3432 | . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0} |
16 | 2, 4, 15 | cmpt 5230 | . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
17 | 1, 16 | wceq 1536 | 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
Colors of variables: wff setvar class |
This definition is referenced by: ocval 31308 |
Copyright terms: Public domain | W3C validator |