HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-oc Structured version   Visualization version   GIF version

Definition df-oc 31227
Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 31255 and chocvali 31274 for its value. Textbooks usually denote this unary operation with the symbol as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-oc ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-oc
StepHypRef Expression
1 cort 30905 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 30894 . . . 4 class
43cpw 4550 . . 3 class 𝒫 ℋ
5 vy . . . . . . . 8 setvar 𝑦
65cv 1540 . . . . . . 7 class 𝑦
7 vz . . . . . . . 8 setvar 𝑧
87cv 1540 . . . . . . 7 class 𝑧
9 csp 30897 . . . . . . 7 class ·ih
106, 8, 9co 7346 . . . . . 6 class (𝑦 ·ih 𝑧)
11 cc0 11003 . . . . . 6 class 0
1210, 11wceq 1541 . . . . 5 wff (𝑦 ·ih 𝑧) = 0
132cv 1540 . . . . 5 class 𝑥
1412, 7, 13wral 3047 . . . 4 wff 𝑧𝑥 (𝑦 ·ih 𝑧) = 0
1514, 5, 3crab 3395 . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0}
162, 4, 15cmpt 5172 . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
171, 16wceq 1541 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
Colors of variables: wff setvar class
This definition is referenced by:  ocval  31255
  Copyright terms: Public domain W3C validator