HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-oc Structured version   Visualization version   GIF version

Definition df-oc 29515
Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 29543 and chocvali 29562 for its value. Textbooks usually denote this unary operation with the symbol as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-oc ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-oc
StepHypRef Expression
1 cort 29193 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 29182 . . . 4 class
43cpw 4530 . . 3 class 𝒫 ℋ
5 vy . . . . . . . 8 setvar 𝑦
65cv 1538 . . . . . . 7 class 𝑦
7 vz . . . . . . . 8 setvar 𝑧
87cv 1538 . . . . . . 7 class 𝑧
9 csp 29185 . . . . . . 7 class ·ih
106, 8, 9co 7255 . . . . . 6 class (𝑦 ·ih 𝑧)
11 cc0 10802 . . . . . 6 class 0
1210, 11wceq 1539 . . . . 5 wff (𝑦 ·ih 𝑧) = 0
132cv 1538 . . . . 5 class 𝑥
1412, 7, 13wral 3063 . . . 4 wff 𝑧𝑥 (𝑦 ·ih 𝑧) = 0
1514, 5, 3crab 3067 . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0}
162, 4, 15cmpt 5153 . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
171, 16wceq 1539 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
Colors of variables: wff setvar class
This definition is referenced by:  ocval  29543
  Copyright terms: Public domain W3C validator