![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-oc | Structured version Visualization version GIF version |
Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 31110 and chocvali 31129 for its value. Textbooks usually denote this unary operation with the symbol ⊥ as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) ⊥ rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-oc | ⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cort 30760 | . 2 class ⊥ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | chba 30749 | . . . 4 class ℋ | |
4 | 3 | cpw 4606 | . . 3 class 𝒫 ℋ |
5 | vy | . . . . . . . 8 setvar 𝑦 | |
6 | 5 | cv 1532 | . . . . . . 7 class 𝑦 |
7 | vz | . . . . . . . 8 setvar 𝑧 | |
8 | 7 | cv 1532 | . . . . . . 7 class 𝑧 |
9 | csp 30752 | . . . . . . 7 class ·ih | |
10 | 6, 8, 9 | co 7426 | . . . . . 6 class (𝑦 ·ih 𝑧) |
11 | cc0 11146 | . . . . . 6 class 0 | |
12 | 10, 11 | wceq 1533 | . . . . 5 wff (𝑦 ·ih 𝑧) = 0 |
13 | 2 | cv 1532 | . . . . 5 class 𝑥 |
14 | 12, 7, 13 | wral 3058 | . . . 4 wff ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0 |
15 | 14, 5, 3 | crab 3430 | . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0} |
16 | 2, 4, 15 | cmpt 5235 | . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
17 | 1, 16 | wceq 1533 | 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
Colors of variables: wff setvar class |
This definition is referenced by: ocval 31110 |
Copyright terms: Public domain | W3C validator |