Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-oc | Structured version Visualization version GIF version |
Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 29642 and chocvali 29661 for its value. Textbooks usually denote this unary operation with the symbol ⊥ as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) ⊥ rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-oc | ⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cort 29292 | . 2 class ⊥ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | chba 29281 | . . . 4 class ℋ | |
4 | 3 | cpw 4533 | . . 3 class 𝒫 ℋ |
5 | vy | . . . . . . . 8 setvar 𝑦 | |
6 | 5 | cv 1538 | . . . . . . 7 class 𝑦 |
7 | vz | . . . . . . . 8 setvar 𝑧 | |
8 | 7 | cv 1538 | . . . . . . 7 class 𝑧 |
9 | csp 29284 | . . . . . . 7 class ·ih | |
10 | 6, 8, 9 | co 7275 | . . . . . 6 class (𝑦 ·ih 𝑧) |
11 | cc0 10871 | . . . . . 6 class 0 | |
12 | 10, 11 | wceq 1539 | . . . . 5 wff (𝑦 ·ih 𝑧) = 0 |
13 | 2 | cv 1538 | . . . . 5 class 𝑥 |
14 | 12, 7, 13 | wral 3064 | . . . 4 wff ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0 |
15 | 14, 5, 3 | crab 3068 | . . 3 class {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0} |
16 | 2, 4, 15 | cmpt 5157 | . 2 class (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
17 | 1, 16 | wceq 1539 | 1 wff ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
Colors of variables: wff setvar class |
This definition is referenced by: ocval 29642 |
Copyright terms: Public domain | W3C validator |