HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-ch0 Structured version   Visualization version   GIF version

Definition df-ch0 31182
Description: Define the zero for closed subspaces of Hilbert space. See h0elch 31184 for closure law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
df-ch0 0 = {0}

Detailed syntax breakdown of Definition df-ch0
StepHypRef Expression
1 c0h 30864 . 2 class 0
2 c0v 30853 . . 3 class 0
32csn 4589 . 2 class {0}
41, 3wceq 1540 1 wff 0 = {0}
Colors of variables: wff setvar class
This definition is referenced by:  elch0  31183  h0elch  31184  sh0le  31369  spansn0  31470  df0op2  31681  ho01i  31757  hh0oi  31832  nmop0h  31920
  Copyright terms: Public domain W3C validator