HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-ch0 Structured version   Visualization version   GIF version

Definition df-ch0 31215
Description: Define the zero for closed subspaces of Hilbert space. See h0elch 31217 for closure law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
df-ch0 0 = {0}

Detailed syntax breakdown of Definition df-ch0
StepHypRef Expression
1 c0h 30897 . 2 class 0
2 c0v 30886 . . 3 class 0
32csn 4579 . 2 class {0}
41, 3wceq 1540 1 wff 0 = {0}
Colors of variables: wff setvar class
This definition is referenced by:  elch0  31216  h0elch  31217  sh0le  31402  spansn0  31503  df0op2  31714  ho01i  31790  hh0oi  31865  nmop0h  31953
  Copyright terms: Public domain W3C validator