HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-ch0 Structured version   Visualization version   GIF version

Definition df-ch0 28450
Description: Define the zero for closed subspaces of Hilbert space. See h0elch 28452 for closure law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
df-ch0 0 = {0}

Detailed syntax breakdown of Definition df-ch0
StepHypRef Expression
1 c0h 28132 . 2 class 0
2 c0v 28121 . . 3 class 0
32csn 4316 . 2 class {0}
41, 3wceq 1631 1 wff 0 = {0}
Colors of variables: wff setvar class
This definition is referenced by:  elch0  28451  h0elch  28452  sh0le  28639  spansn0  28740  df0op2  28951  ho01i  29027  hh0oi  29102  nmop0h  29190
  Copyright terms: Public domain W3C validator