HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-ch0 Structured version   Visualization version   GIF version

Definition df-ch0 31285
Description: Define the zero for closed subspaces of Hilbert space. See h0elch 31287 for closure law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
df-ch0 0 = {0}

Detailed syntax breakdown of Definition df-ch0
StepHypRef Expression
1 c0h 30967 . 2 class 0
2 c0v 30956 . . 3 class 0
32csn 4648 . 2 class {0}
41, 3wceq 1537 1 wff 0 = {0}
Colors of variables: wff setvar class
This definition is referenced by:  elch0  31286  h0elch  31287  sh0le  31472  spansn0  31573  df0op2  31784  ho01i  31860  hh0oi  31935  nmop0h  32023
  Copyright terms: Public domain W3C validator