HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocvali Structured version   Visualization version   GIF version

Theorem chocvali 30987
Description: Value of the orthogonal complement of a Hilbert lattice element. The orthogonal complement of ๐ด is the set of vectors that are orthogonal to all vectors in ๐ด. (Contributed by NM, 8-Aug-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
chocval.1 ๐ด โˆˆ Cโ„‹
Assertion
Ref Expression
chocvali (โŠฅโ€˜๐ด) = {๐‘ฅ โˆˆ โ„‹ โˆฃ โˆ€๐‘ฆ โˆˆ ๐ด (๐‘ฅ ยทih ๐‘ฆ) = 0}
Distinct variable group:   ๐‘ฅ,๐‘ฆ,๐ด

Proof of Theorem chocvali
StepHypRef Expression
1 chocval.1 . . 3 ๐ด โˆˆ Cโ„‹
21chssii 30919 . 2 ๐ด โІ โ„‹
3 ocval 30968 . 2 (๐ด โІ โ„‹ โ†’ (โŠฅโ€˜๐ด) = {๐‘ฅ โˆˆ โ„‹ โˆฃ โˆ€๐‘ฆ โˆˆ ๐ด (๐‘ฅ ยทih ๐‘ฆ) = 0})
42, 3ax-mp 5 1 (โŠฅโ€˜๐ด) = {๐‘ฅ โˆˆ โ„‹ โˆฃ โˆ€๐‘ฆ โˆˆ ๐ด (๐‘ฅ ยทih ๐‘ฆ) = 0}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   โˆˆ wcel 2105  โˆ€wral 3060  {crab 3431   โІ wss 3948  โ€˜cfv 6543  (class class class)co 7412  0cc0 11116   โ„‹chba 30607   ยทih csp 30610   Cโ„‹ cch 30617  โŠฅcort 30618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-hilex 30687
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-sh 30895  df-ch 30909  df-oc 30940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator