![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chocvali | Structured version Visualization version GIF version |
Description: Value of the orthogonal complement of a Hilbert lattice element. The orthogonal complement of 𝐴 is the set of vectors that are orthogonal to all vectors in 𝐴. (Contributed by NM, 8-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chocval.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
chocvali | ⊢ (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chocval.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | chssii 28660 | . 2 ⊢ 𝐴 ⊆ ℋ |
3 | ocval 28711 | . 2 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 ∀wral 3090 {crab 3094 ⊆ wss 3792 ‘cfv 6135 (class class class)co 6922 0cc0 10272 ℋchba 28348 ·ih csp 28351 Cℋ cch 28358 ⊥cort 28359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-hilex 28428 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-sh 28636 df-ch 28650 df-oc 28681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |