HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocval Structured version   Visualization version   GIF version

Theorem ocval 28479
Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ocval (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
Distinct variable group:   𝑥,𝑦,𝐻

Proof of Theorem ocval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 28196 . . 3 ℋ ∈ V
21elpw2 4959 . 2 (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ)
3 raleq 3287 . . . 4 (𝑧 = 𝐻 → (∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0))
43rabbidv 3339 . . 3 (𝑧 = 𝐻 → {𝑥 ∈ ℋ ∣ ∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0} = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
5 df-oc 28449 . . 3 ⊥ = (𝑧 ∈ 𝒫 ℋ ↦ {𝑥 ∈ ℋ ∣ ∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0})
61rabex 4946 . . 3 {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0} ∈ V
74, 5, 6fvmpt 6424 . 2 (𝐻 ∈ 𝒫 ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
82, 7sylbir 225 1 (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  wral 3061  {crab 3065  wss 3723  𝒫 cpw 4297  cfv 6031  (class class class)co 6793  0cc0 10138  chil 28116   ·ih csp 28119  cort 28127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-hilex 28196
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-oc 28449
This theorem is referenced by:  ocel  28480  ocsh  28482  occon  28486  chocvali  28498
  Copyright terms: Public domain W3C validator