![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ocval | Structured version Visualization version GIF version |
Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ocval | ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 31031 | . . 3 ⊢ ℋ ∈ V | |
2 | 1 | elpw2 5352 | . 2 ⊢ (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ) |
3 | raleq 3331 | . . . 4 ⊢ (𝑧 = 𝐻 → (∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0)) | |
4 | 3 | rabbidv 3451 | . . 3 ⊢ (𝑧 = 𝐻 → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0} = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
5 | df-oc 31284 | . . 3 ⊢ ⊥ = (𝑧 ∈ 𝒫 ℋ ↦ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0}) | |
6 | 1 | rabex 5357 | . . 3 ⊢ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0} ∈ V |
7 | 4, 5, 6 | fvmpt 7029 | . 2 ⊢ (𝐻 ∈ 𝒫 ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
8 | 2, 7 | sylbir 235 | 1 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 𝒫 cpw 4622 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℋchba 30951 ·ih csp 30954 ⊥cort 30962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-oc 31284 |
This theorem is referenced by: ocel 31313 ocsh 31315 occon 31319 chocvali 31331 |
Copyright terms: Public domain | W3C validator |