| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocval | Structured version Visualization version GIF version | ||
| Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocval | ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30985 | . . 3 ⊢ ℋ ∈ V | |
| 2 | 1 | elpw2 5309 | . 2 ⊢ (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ) |
| 3 | raleq 3306 | . . . 4 ⊢ (𝑧 = 𝐻 → (∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0)) | |
| 4 | 3 | rabbidv 3428 | . . 3 ⊢ (𝑧 = 𝐻 → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0} = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| 5 | df-oc 31238 | . . 3 ⊢ ⊥ = (𝑧 ∈ 𝒫 ℋ ↦ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0}) | |
| 6 | 1 | rabex 5314 | . . 3 ⊢ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0} ∈ V |
| 7 | 4, 5, 6 | fvmpt 6991 | . 2 ⊢ (𝐻 ∈ 𝒫 ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| 8 | 2, 7 | sylbir 235 | 1 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 ⊆ wss 3931 𝒫 cpw 4580 ‘cfv 6536 (class class class)co 7410 0cc0 11134 ℋchba 30905 ·ih csp 30908 ⊥cort 30916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-hilex 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-oc 31238 |
| This theorem is referenced by: ocel 31267 ocsh 31269 occon 31273 chocvali 31285 |
| Copyright terms: Public domain | W3C validator |