HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocval Structured version   Visualization version   GIF version

Theorem ocval 30498
Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ocval (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
Distinct variable group:   𝑥,𝑦,𝐻

Proof of Theorem ocval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30217 . . 3 ℋ ∈ V
21elpw2 5341 . 2 (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ)
3 raleq 3323 . . . 4 (𝑧 = 𝐻 → (∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0))
43rabbidv 3441 . . 3 (𝑧 = 𝐻 → {𝑥 ∈ ℋ ∣ ∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0} = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
5 df-oc 30470 . . 3 ⊥ = (𝑧 ∈ 𝒫 ℋ ↦ {𝑥 ∈ ℋ ∣ ∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0})
61rabex 5328 . . 3 {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0} ∈ V
74, 5, 6fvmpt 6987 . 2 (𝐻 ∈ 𝒫 ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
82, 7sylbir 234 1 (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wral 3062  {crab 3433  wss 3946  𝒫 cpw 4598  cfv 6535  (class class class)co 7396  0cc0 11097  chba 30137   ·ih csp 30140  cort 30148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423  ax-hilex 30217
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6487  df-fun 6537  df-fv 6543  df-oc 30470
This theorem is referenced by:  ocel  30499  ocsh  30501  occon  30505  chocvali  30517
  Copyright terms: Public domain W3C validator