| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocval | Structured version Visualization version GIF version | ||
| Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocval | ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30928 | . . 3 ⊢ ℋ ∈ V | |
| 2 | 1 | elpw2 5289 | . 2 ⊢ (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ) |
| 3 | raleq 3296 | . . . 4 ⊢ (𝑧 = 𝐻 → (∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0)) | |
| 4 | 3 | rabbidv 3413 | . . 3 ⊢ (𝑧 = 𝐻 → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0} = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| 5 | df-oc 31181 | . . 3 ⊢ ⊥ = (𝑧 ∈ 𝒫 ℋ ↦ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0}) | |
| 6 | 1 | rabex 5294 | . . 3 ⊢ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0} ∈ V |
| 7 | 4, 5, 6 | fvmpt 6968 | . 2 ⊢ (𝐻 ∈ 𝒫 ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| 8 | 2, 7 | sylbir 235 | 1 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 𝒫 cpw 4563 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ℋchba 30848 ·ih csp 30851 ⊥cort 30859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-oc 31181 |
| This theorem is referenced by: ocel 31210 ocsh 31212 occon 31216 chocvali 31228 |
| Copyright terms: Public domain | W3C validator |