HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocval Structured version   Visualization version   GIF version

Theorem ocval 31262
Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ocval (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
Distinct variable group:   𝑥,𝑦,𝐻

Proof of Theorem ocval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30981 . . 3 ℋ ∈ V
21elpw2 5274 . 2 (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ)
3 raleq 3290 . . . 4 (𝑧 = 𝐻 → (∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0))
43rabbidv 3403 . . 3 (𝑧 = 𝐻 → {𝑥 ∈ ℋ ∣ ∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0} = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
5 df-oc 31234 . . 3 ⊥ = (𝑧 ∈ 𝒫 ℋ ↦ {𝑥 ∈ ℋ ∣ ∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0})
61rabex 5279 . . 3 {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0} ∈ V
74, 5, 6fvmpt 6935 . 2 (𝐻 ∈ 𝒫 ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
82, 7sylbir 235 1 (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wral 3048  {crab 3396  wss 3898  𝒫 cpw 4549  cfv 6486  (class class class)co 7352  0cc0 11013  chba 30901   ·ih csp 30904  cort 30912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-hilex 30981
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-oc 31234
This theorem is referenced by:  ocel  31263  ocsh  31265  occon  31269  chocvali  31281
  Copyright terms: Public domain W3C validator