| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocval | Structured version Visualization version GIF version | ||
| Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocval | ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30981 | . . 3 ⊢ ℋ ∈ V | |
| 2 | 1 | elpw2 5274 | . 2 ⊢ (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ) |
| 3 | raleq 3290 | . . . 4 ⊢ (𝑧 = 𝐻 → (∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0)) | |
| 4 | 3 | rabbidv 3403 | . . 3 ⊢ (𝑧 = 𝐻 → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0} = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| 5 | df-oc 31234 | . . 3 ⊢ ⊥ = (𝑧 ∈ 𝒫 ℋ ↦ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0}) | |
| 6 | 1 | rabex 5279 | . . 3 ⊢ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0} ∈ V |
| 7 | 4, 5, 6 | fvmpt 6935 | . 2 ⊢ (𝐻 ∈ 𝒫 ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| 8 | 2, 7 | sylbir 235 | 1 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ⊆ wss 3898 𝒫 cpw 4549 ‘cfv 6486 (class class class)co 7352 0cc0 11013 ℋchba 30901 ·ih csp 30904 ⊥cort 30912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-hilex 30981 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-oc 31234 |
| This theorem is referenced by: ocel 31263 ocsh 31265 occon 31269 chocvali 31281 |
| Copyright terms: Public domain | W3C validator |