Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocval Structured version   Visualization version   GIF version

Theorem ocval 29066
 Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ocval (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
Distinct variable group:   𝑥,𝑦,𝐻

Proof of Theorem ocval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 28785 . . 3 ℋ ∈ V
21elpw2 5215 . 2 (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ)
3 raleq 3361 . . . 4 (𝑧 = 𝐻 → (∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0))
43rabbidv 3430 . . 3 (𝑧 = 𝐻 → {𝑥 ∈ ℋ ∣ ∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0} = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
5 df-oc 29038 . . 3 ⊥ = (𝑧 ∈ 𝒫 ℋ ↦ {𝑥 ∈ ℋ ∣ ∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0})
61rabex 5202 . . 3 {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0} ∈ V
74, 5, 6fvmpt 6749 . 2 (𝐻 ∈ 𝒫 ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
82, 7sylbir 238 1 (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112  ∀wral 3109  {crab 3113   ⊆ wss 3884  𝒫 cpw 4500  ‘cfv 6328  (class class class)co 7139  0cc0 10530   ℋchba 28705   ·ih csp 28708  ⊥cort 28716 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-hilex 28785 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-iota 6287  df-fun 6330  df-fv 6336  df-oc 29038 This theorem is referenced by:  ocel  29067  ocsh  29069  occon  29073  chocvali  29085
 Copyright terms: Public domain W3C validator