Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ocval | Structured version Visualization version GIF version |
Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ocval | ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 29361 | . . 3 ⊢ ℋ ∈ V | |
2 | 1 | elpw2 5269 | . 2 ⊢ (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ) |
3 | raleq 3342 | . . . 4 ⊢ (𝑧 = 𝐻 → (∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0)) | |
4 | 3 | rabbidv 3414 | . . 3 ⊢ (𝑧 = 𝐻 → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0} = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
5 | df-oc 29614 | . . 3 ⊢ ⊥ = (𝑧 ∈ 𝒫 ℋ ↦ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝑧 (𝑥 ·ih 𝑦) = 0}) | |
6 | 1 | rabex 5256 | . . 3 ⊢ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0} ∈ V |
7 | 4, 5, 6 | fvmpt 6875 | . 2 ⊢ (𝐻 ∈ 𝒫 ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
8 | 2, 7 | sylbir 234 | 1 ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ⊆ wss 3887 𝒫 cpw 4533 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℋchba 29281 ·ih csp 29284 ⊥cort 29292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-oc 29614 |
This theorem is referenced by: ocel 29643 ocsh 29645 occon 29649 chocvali 29661 |
Copyright terms: Public domain | W3C validator |