HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocval Structured version   Visualization version   GIF version

Theorem ocval 31312
Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ocval (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
Distinct variable group:   𝑥,𝑦,𝐻

Proof of Theorem ocval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 31031 . . 3 ℋ ∈ V
21elpw2 5352 . 2 (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ)
3 raleq 3331 . . . 4 (𝑧 = 𝐻 → (∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0))
43rabbidv 3451 . . 3 (𝑧 = 𝐻 → {𝑥 ∈ ℋ ∣ ∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0} = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
5 df-oc 31284 . . 3 ⊥ = (𝑧 ∈ 𝒫 ℋ ↦ {𝑥 ∈ ℋ ∣ ∀𝑦𝑧 (𝑥 ·ih 𝑦) = 0})
61rabex 5357 . . 3 {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0} ∈ V
74, 5, 6fvmpt 7029 . 2 (𝐻 ∈ 𝒫 ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
82, 7sylbir 235 1 (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐻 (𝑥 ·ih 𝑦) = 0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976  𝒫 cpw 4622  cfv 6573  (class class class)co 7448  0cc0 11184  chba 30951   ·ih csp 30954  cort 30962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-hilex 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-oc 31284
This theorem is referenced by:  ocel  31313  ocsh  31315  occon  31319  chocvali  31331
  Copyright terms: Public domain W3C validator