![]() |
Metamath
Proof Explorer Theorem List (p. 306 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43657) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | qtophaus 30501* | If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ ∼ = (◡𝐹 ∘ 𝐹) & ⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) & ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ (𝐽 qTop 𝐹)) & ⊢ (𝜑 → ∼ ∈ (Clsd‘(𝐽 ×t 𝐽))) ⇒ ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Haus) | ||
Theorem | circtopn 30502* | The topology of the unit circle is generated by open intervals of the polar coordinate. (Contributed by Thierry Arnoux, 4-Jan-2020.) |
⊢ 𝐼 = (0[,](2 · π)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ (𝐽 qTop 𝐹) = (TopOpen‘(𝐹 “s ℝfld)) | ||
Theorem | circcn 30503* | The function gluing the real line into the unit circle is continuous. (Contributed by Thierry Arnoux, 5-Jan-2020.) |
⊢ 𝐼 = (0[,](2 · π)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) | ||
Theorem | reff 30504* | For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a defintion of refinement. Note that this definition uses the axiom of choice through ac6sg 9645. (Contributed by Thierry Arnoux, 12-Jan-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴Ref𝐵 ↔ (∪ 𝐵 ⊆ ∪ 𝐴 ∧ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑣 ∈ 𝐴 𝑣 ⊆ (𝑓‘𝑣))))) | ||
Theorem | locfinreflem 30505* | A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ⊆ 𝐽) & ⊢ (𝜑 → 𝑉Ref𝑈) & ⊢ (𝜑 → 𝑉 ∈ (LocFin‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))) | ||
Theorem | locfinref 30506* | A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ⊆ 𝐽) & ⊢ (𝜑 → 𝑉Ref𝑈) & ⊢ (𝜑 → 𝑉 ∈ (LocFin‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) | ||
Syntax | ccref 30507 | The "every open cover has an 𝐴 refinement" predicate. |
class CovHasRef𝐴 | ||
Definition | df-cref 30508* | Define a statement "every open cover has an 𝐴 refinement" , where 𝐴 is a property for refinements like "finite", "countable", "point finite" or "locally finite". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} | ||
Theorem | iscref 30509* | The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) | ||
Theorem | crefeq 30510 | Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐴 = 𝐵 → CovHasRef𝐴 = CovHasRef𝐵) | ||
Theorem | creftop 30511 | A space where every open cover has an 𝐴 refinement is a topological space. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐽 ∈ CovHasRef𝐴 → 𝐽 ∈ Top) | ||
Theorem | crefi 30512* | The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) | ||
Theorem | crefdf 30513* | A formulation of crefi 30512 easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐵 = CovHasRef𝐴 & ⊢ (𝑧 ∈ 𝐴 → 𝜑) ⇒ ⊢ ((𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑 ∧ 𝑧Ref𝐶)) | ||
Theorem | crefss 30514 | The "every open cover has an 𝐴 refinement" predicate respects inclusion. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐴 ⊆ 𝐵 → CovHasRef𝐴 ⊆ CovHasRef𝐵) | ||
Theorem | cmpcref 30515 | Equivalent definition of compact space in terms of open cover refinements. Compact spaces are topologies with finite open cover refinements. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ Comp = CovHasRefFin | ||
Theorem | cmpfiref 30516* | Every open cover of a Compact space has a finite refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ Fin ∧ 𝑣Ref𝑈)) | ||
Syntax | cldlf 30517 | Extend class notation with the class of all Lindelöf spaces. |
class Ldlf | ||
Definition | df-ldlf 30518 | Definition of a Lindelöf space. A Lindelöf space is a topological space in which every open cover has a countable subcover. Definition 1 of [BourbakiTop2] p. 195. (Contributed by Thierry Arnoux, 30-Jan-2020.) |
⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} | ||
Theorem | ldlfcntref 30519* | Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) | ||
Syntax | cpcmp 30520 | Extend class notation with the class of all paracompact topologies. |
class Paracomp | ||
Definition | df-pcmp 30521 | Definition of a paracompact topology. A topology is said to be paracompact iff every open cover has an open refinement that is locally finite. The definition 6 of [BourbakiTop1] p. I.69. also requires the topology to be Hausdorff, but this is dropped here. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ Paracomp = {𝑗 ∣ 𝑗 ∈ CovHasRef(LocFin‘𝑗)} | ||
Theorem | ispcmp 30522 | The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)) | ||
Theorem | cmppcmp 30523 | Every compact space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Paracomp) | ||
Theorem | dispcmp 30524 | Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Paracomp) | ||
Theorem | pcmplfin 30525* | Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement 𝑣 that is locally finite. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) | ||
Theorem | pcmplfinf 30526* | Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement ran 𝑓 that is locally finite, using the same index as the original cover 𝑈. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) | ||
Syntax | cmetid 30527 | Extend class notation with the class of metric identifications. |
class ~Met | ||
Syntax | cpstm 30528 | Extend class notation with the metric induced by a pseudometric. |
class pstoMet | ||
Definition | df-metid 30529* | Define the metric identification relation for a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ~Met = (𝑑 ∈ ∪ ran PsMet ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)}) | ||
Definition | df-pstm 30530* | Define the metric induced by a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ pstoMet = (𝑑 ∈ ∪ ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met‘𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met‘𝑑)) ↦ ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) | ||
Theorem | metidval 30531* | Value of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝑥𝐷𝑦) = 0)}) | ||
Theorem | metidss 30532 | As a relation, the metric identification is a subset of a Cartesian product. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) ⊆ (𝑋 × 𝑋)) | ||
Theorem | metidv 30533 | 𝐴 and 𝐵 identify by the metric 𝐷 if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) | ||
Theorem | metideq 30534 | Basic property of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐸) = (𝐵𝐷𝐹)) | ||
Theorem | metider 30535 | The metric identification is an equivalence relation. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) Er 𝑋) | ||
Theorem | pstmval 30536* | Value of the metric induced by a pseudometric 𝐷. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ∼ = (~Met‘𝐷) ⇒ ⊢ (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑎 ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝐷𝑦)})) | ||
Theorem | pstmfval 30537 | Function value of the metric induced by a pseudometric 𝐷 (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ ∼ = (~Met‘𝐷) ⇒ ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ([𝐴] ∼ (pstoMet‘𝐷)[𝐵] ∼ ) = (𝐴𝐷𝐵)) | ||
Theorem | pstmxmet 30538 | The metric induced by a pseudometric is a full-fledged metric on the equivalence classes of the metric identification. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ ∼ = (~Met‘𝐷) ⇒ ⊢ (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / ∼ ))) | ||
Theorem | hauseqcn 30539 | In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | unitsscn 30540 | The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
⊢ (0[,]1) ⊆ ℂ | ||
Theorem | elunitrn 30541 | The closed unit interval is a subset of the set of the real numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ) | ||
Theorem | elunitcn 30542 | The closed unit interval is a subset of the set of the complext numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℂ) | ||
Theorem | elunitge0 30543 | An element of the closed unit interval is positive. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 20-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]1) → 0 ≤ 𝐴) | ||
Theorem | unitssxrge0 30544 | The closed unit interval is a subset of the set of the extended nonnegative reals. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
⊢ (0[,]1) ⊆ (0[,]+∞) | ||
Theorem | unitdivcld 30545 | Necessary conditions for a quotient to be in the closed unit interval. (somewhat too strong, it would be sufficient that A and B are in RR+) (Contributed by Thierry Arnoux, 20-Dec-2016.) |
⊢ ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 ≤ 𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1))) | ||
Theorem | iistmd 30546 | The closed unit interval forms a topological monoid under multiplication. (Contributed by Thierry Arnoux, 25-Mar-2017.) |
⊢ 𝐼 = ((mulGrp‘ℂfld) ↾s (0[,]1)) ⇒ ⊢ 𝐼 ∈ TopMnd | ||
Theorem | unicls 30547 | The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ∪ (Clsd‘𝐽) = 𝑋 | ||
Theorem | tpr2tp 30548 | The usual topology on (ℝ × ℝ) is the product topology of the usual topology on ℝ. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)) | ||
Theorem | tpr2uni 30549 | The usual topology on (ℝ × ℝ) is the product topology of the usual topology on ℝ. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ ∪ (𝐽 ×t 𝐽) = (ℝ × ℝ) | ||
Theorem | xpinpreima 30550 | Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ (𝐴 × 𝐵) = ((◡(1st ↾ (V × V)) “ 𝐴) ∩ (◡(2nd ↾ (V × V)) “ 𝐵)) | ||
Theorem | xpinpreima2 30551 | Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ ((𝐴 ⊆ 𝐸 ∧ 𝐵 ⊆ 𝐹) → (𝐴 × 𝐵) = ((◡(1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ (◡(2nd ↾ (𝐸 × 𝐹)) “ 𝐵))) | ||
Theorem | sqsscirc1 30552 | The complex square of side 𝐷 is a subset of the complex circle of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
⊢ ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷)) | ||
Theorem | sqsscirc2 30553 | The complex square of side 𝐷 is a subset of the complex disc of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵 − 𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵 − 𝐴))) < (𝐷 / 2)) → (abs‘(𝐵 − 𝐴)) < 𝐷)) | ||
Theorem | cnre2csqlem 30554* | Lemma for cnre2csqima 30555. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
⊢ (𝐺 ↾ (ℝ × ℝ)) = (𝐻 ∘ 𝐹) & ⊢ 𝐹 Fn (ℝ × ℝ) & ⊢ 𝐺 Fn V & ⊢ (𝑥 ∈ (ℝ × ℝ) → (𝐺‘𝑥) ∈ ℝ) & ⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥 − 𝑦)) = ((𝐻‘𝑥) − (𝐻‘𝑦))) ⇒ ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ (◡(𝐺 ↾ (ℝ × ℝ)) “ (((𝐺‘𝑋) − 𝐷)(,)((𝐺‘𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹‘𝑌) − (𝐹‘𝑋)))) < 𝐷)) | ||
Theorem | cnre2csqima 30555* | Image of a centered square by the canonical bijection from (ℝ × ℝ) to ℂ. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ⇒ ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((((1st ‘𝑋) − 𝐷)(,)((1st ‘𝑋) + 𝐷)) × (((2nd ‘𝑋) − 𝐷)(,)((2nd ‘𝑋) + 𝐷))) → ((abs‘(ℜ‘((𝐹‘𝑌) − (𝐹‘𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹‘𝑌) − (𝐹‘𝑋)))) < 𝐷))) | ||
Theorem | tpr2rico 30556* | For any point of an open set of the usual topology on (ℝ × ℝ) there is an open square which contains that point and is entirely in the open set. This is square is actually a ball by the (𝑙↑+∞) norm 𝑋. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐺 = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) & ⊢ 𝐵 = ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑟 ∈ 𝐵 (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴)) | ||
Theorem | cnvordtrestixx 30557* | The restriction of the 'greater than' order to an interval gives the same topology as the subspace topology. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
⊢ 𝐴 ⊆ ℝ* & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥[,]𝑦) ⊆ 𝐴) ⇒ ⊢ ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))) | ||
Theorem | prsdm 30558 | Domain of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ (𝐾 ∈ Proset → dom ≤ = 𝐵) | ||
Theorem | prsrn 30559 | Range of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ (𝐾 ∈ Proset → ran ≤ = 𝐵) | ||
Theorem | prsss 30560 | Relation of a subproset. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) | ||
Theorem | prsssdm 30561 | Domain of a subproset relation. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) | ||
Theorem | ordtprsval 30562* | Value of the order topology for a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐸 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) & ⊢ 𝐹 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) ⇒ ⊢ (𝐾 ∈ Proset → (ordTop‘ ≤ ) = (topGen‘(fi‘({𝐵} ∪ (𝐸 ∪ 𝐹))))) | ||
Theorem | ordtprsuni 30563* | Value of the order topology. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐸 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) & ⊢ 𝐹 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) ⇒ ⊢ (𝐾 ∈ Proset → 𝐵 = ∪ ({𝐵} ∪ (𝐸 ∪ 𝐹))) | ||
Theorem | ordtcnvNEW 30564 | The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.) (Revised by Thierry Arnoux, 13-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ (𝐾 ∈ Proset → (ordTop‘◡ ≤ ) = (ordTop‘ ≤ )) | ||
Theorem | ordtrestNEW 30565 | The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ≤ ) ↾t 𝐴)) | ||
Theorem | ordtrest2NEWlem 30566* | Lemma for ordtrest2NEW 30567. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) ⇒ ⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) | ||
Theorem | ordtrest2NEW 30567* | An interval-closed set 𝐴 in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in ℝ, but in other sets like ℚ there are interval-closed sets like (π, +∞) ∩ ℚ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) ⇒ ⊢ (𝜑 → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴)) | ||
Theorem | ordtconnlem1 30568* | Connectedness in the order topology of a toset. This is the "easy" direction of ordtconn 30569. See also reconnlem1 23037. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐽 = (ordTop‘ ≤ ) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) → ((𝐽 ↾t 𝐴) ∈ Conn → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴))) | ||
Theorem | ordtconn 30569 | Connectedness in the order topology of a complete uniform totally ordered space. (Contributed by Thierry Arnoux, 15-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐽 = (ordTop‘ ≤ ) ⇒ ⊢ ⊤ | ||
Theorem | mndpluscn 30570* | A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017.) |
⊢ 𝐹 ∈ (𝐽Homeo𝐾) & ⊢ + :(𝐵 × 𝐵)⟶𝐵 & ⊢ ∗ :(𝐶 × 𝐶)⟶𝐶 & ⊢ 𝐽 ∈ (TopOn‘𝐵) & ⊢ 𝐾 ∈ (TopOn‘𝐶) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))) & ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ⇒ ⊢ ∗ ∈ ((𝐾 ×t 𝐾) Cn 𝐾) | ||
Theorem | mhmhmeotmd 30571 | Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.) |
⊢ 𝐹 ∈ (𝑆 MndHom 𝑇) & ⊢ 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇)) & ⊢ 𝑆 ∈ TopMnd & ⊢ 𝑇 ∈ TopSp ⇒ ⊢ 𝑇 ∈ TopMnd | ||
Theorem | rmulccn 30572* | Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | raddcn 30573* | Addition in the real numbers is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
Theorem | xrmulc1cn 30574* | The operation multiplying an extended real number by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
⊢ 𝐽 = (ordTop‘ ≤ ) & ⊢ 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐽)) | ||
Theorem | fmcncfil 30575 | The image of a Cauchy filter by a continuous filter map is a Cauchy filter. (Contributed by Thierry Arnoux, 12-Nov-2017.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (MetOpen‘𝐸) ⇒ ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)) | ||
Theorem | xrge0hmph 30576 | The extended nonnegative reals are homeomorphic to the closed unit interval. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
⊢ II ≃ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | ||
Theorem | xrge0iifcnv 30577* | Define a bijection from [0, 1] onto [0, +∞]. (Contributed by Thierry Arnoux, 29-Mar-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ⇒ ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))) | ||
Theorem | xrge0iifcv 30578* | The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ⇒ ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) | ||
Theorem | xrge0iifiso 30579* | The defined bijection from the closed unit interval onto the extended nonnegative reals is an order isomorphism. (Contributed by Thierry Arnoux, 31-Mar-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ⇒ ⊢ 𝐹 Isom < , ◡ < ((0[,]1), (0[,]+∞)) | ||
Theorem | xrge0iifhmeo 30580* | Expose a homeomorphism from the closed unit interval to the extended nonnegative reals. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ 𝐹 ∈ (IIHomeo𝐽) | ||
Theorem | xrge0iifhom 30581* | The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 5-Apr-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) +𝑒 (𝐹‘𝑌))) | ||
Theorem | xrge0iif1 30582* | Condition for the defined function, -(log‘𝑥) to be a monoid homomorphism. (Contributed by Thierry Arnoux, 20-Jun-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ (𝐹‘1) = 0 | ||
Theorem | xrge0iifmhm 30583* | The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) | ||
Theorem | xrge0pluscn 30584* | The addition operation of the extended nonnegative real numbers monoid is continuous. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) & ⊢ + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
Theorem | xrge0mulc1cn 30585* | The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) & ⊢ 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐽)) | ||
Theorem | xrge0tps 30586 | The extended nonnegative real numbers monoid forms a topological space. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | ||
Theorem | xrge0topn 30587 | The topology of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 20-Jun-2017.) |
⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | ||
Theorem | xrge0haus 30588 | The topology of the extended nonnegative real numbers is Hausdorff. (Contributed by Thierry Arnoux, 26-Jul-2017.) |
⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) ∈ Haus | ||
Theorem | xrge0tmdOLD 30589 | The extended nonnegative real numbers monoid is a topological monoid. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd | ||
Theorem | xrge0tmd 30590 | The extended nonnegative real numbers monoid is a topological monoid. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof Shortened by Thierry Arnoux, 21-Jun-2017.) |
⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd | ||
Theorem | lmlim 30591 | Relate a limit in a given topology to a complex number limit, provided that topology agrees with the common topology on ℂ on the required subset. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
⊢ 𝐽 ∈ (TopOn‘𝑌) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) & ⊢ 𝑋 ⊆ ℂ ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) | ||
Theorem | lmlimxrge0 30592 | Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ 𝑋 ⊆ (0[,)+∞) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) | ||
Theorem | rge0scvg 30593 | Implication of convergence for a nonnegative series. This could be used to shorten prmreclem6 16029. (Contributed by Thierry Arnoux, 28-Jul-2017.) |
⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ) | ||
Theorem | fsumcvg4 30594 | A serie with finite support is a finite sum, and therefore converges. (Contributed by Thierry Arnoux, 6-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝑆 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) & ⊢ (𝜑 → (◡𝐹 “ (ℂ ∖ {0})) ∈ Fin) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
Theorem | pnfneige0 30595* | A neighborhood of +∞ contains an unbounded interval based at a real number. See pnfnei 21432. (Contributed by Thierry Arnoux, 31-Jul-2017.) |
⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) ⇒ ⊢ ((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) | ||
Theorem | lmxrge0 30596* | Express "sequence 𝐹 converges to plus infinity" (i.e. diverges), for a sequence of nonnegative extended real numbers. (Contributed by Thierry Arnoux, 2-Aug-2017.) |
⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ (𝜑 → 𝐹:ℕ⟶(0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < 𝐴)) | ||
Theorem | lmdvg 30597* | If a monotonic sequence of real numbers diverges, it is unbounded. (Contributed by Thierry Arnoux, 4-Aug-2017.) |
⊢ (𝜑 → 𝐹:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) & ⊢ (𝜑 → ¬ 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘)) | ||
Theorem | lmdvglim 30598* | If a monotonic real number sequence 𝐹 diverges, it converges in the extended real numbers and its limit is plus infinity. (Contributed by Thierry Arnoux, 3-Aug-2017.) |
⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ (𝜑 → 𝐹:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) & ⊢ (𝜑 → ¬ 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)+∞) | ||
Theorem | pl1cn 30599 | A univariate polynomial is continuous. (Contributed by Thierry Arnoux, 17-Sep-2018.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ TopRing) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐸‘𝐹) ∈ (𝐽 Cn 𝐽)) | ||
Syntax | chcmp 30600 | Extend class notation with the Hausdorff uniform completion relation. |
class HCmp |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |