Home | Metamath
Proof Explorer Theorem List (p. 306 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29259) |
Hilbert Space Explorer
(29260-30782) |
Users' Mathboxes
(30783-46465) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pjcohcli 30501 | Closure of composition of projections. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) ∈ ℋ) | ||
Theorem | pjadjcoi 30502 | Adjoint of composition of projections. Special case of Theorem 3.11(viii) of [Beran] p. 106. (Contributed by NM, 6-Oct-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) ·ih 𝐵) = (𝐴 ·ih (((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝐵))) | ||
Theorem | pjcofni 30503 | Functionality of composition of projections. (Contributed by NM, 1-Oct-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) Fn ℋ | ||
Theorem | pjss1coi 30504 | Subset relationship for projections. Theorem 4.5(i)<->(iii) of [Beran] p. 112. (Contributed by NM, 1-Oct-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) = (projℎ‘𝐺)) | ||
Theorem | pjss2coi 30505 | Subset relationship for projections. Theorem 4.5(i)<->(ii) of [Beran] p. 112. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘𝐺)) | ||
Theorem | pjssmi 30506 | Projection meet property. Remark in [Kalmbach] p. 66. Also Theorem 4.5(i)->(iv) of [Beran] p. 112. (Contributed by NM, 26-Sep-2001.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → (𝐻 ⊆ 𝐺 → (((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴))) | ||
Theorem | pjssge0i 30507 | Theorem 4.5(iv)->(v) of [Beran] p. 112. (Contributed by NM, 26-Sep-2001.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → ((((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) → 0 ≤ ((((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) ·ih 𝐴))) | ||
Theorem | pjdifnormi 30508 | Theorem 4.5(v)<->(vi) of [Beran] p. 112. (Contributed by NM, 26-Sep-2001.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → (0 ≤ ((((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) ·ih 𝐴) ↔ (normℎ‘((projℎ‘𝐻)‘𝐴)) ≤ (normℎ‘((projℎ‘𝐺)‘𝐴)))) | ||
Theorem | pjnormssi 30509* | Theorem 4.5(i)<->(vi) of [Beran] p. 112. (Contributed by NM, 26-Sep-2001.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐺 ⊆ 𝐻 ↔ ∀𝑥 ∈ ℋ (normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ (normℎ‘((projℎ‘𝐻)‘𝑥))) | ||
Theorem | pjorthcoi 30510 | Composition of projections of orthogonal subspaces. Part (i)->(iia) of Theorem 27.4 of [Halmos] p. 45. (Contributed by NM, 6-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐺 ⊆ (⊥‘𝐻) → ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = 0hop ) | ||
Theorem | pjscji 30511 | The projection of orthogonal subspaces is the sum of the projections. (Contributed by NM, 11-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐺 ⊆ (⊥‘𝐻) → (projℎ‘(𝐺 ∨ℋ 𝐻)) = ((projℎ‘𝐺) +op (projℎ‘𝐻))) | ||
Theorem | pjssumi 30512 | The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐺 ⊆ (⊥‘𝐻) → (projℎ‘(𝐺 +ℋ 𝐻)) = ((projℎ‘𝐺) +op (projℎ‘𝐻))) | ||
Theorem | pjssposi 30513* | Projector ordering can be expressed by the subset relationship between their projection subspaces. (i)<->(iii) of Theorem 29.2 of [Halmos] p. 48. (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (∀𝑥 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) ↔ 𝐺 ⊆ 𝐻) | ||
Theorem | pjordi 30514* | The definition of projector ordering in [Halmos] p. 42 is equivalent to the definition of projector ordering in [Beran] p. 110. (We will usually express projector ordering with the even simpler equivalent 𝐺 ⊆ 𝐻; see pjssposi 30513). (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (∀𝑥 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) ↔ ((projℎ‘𝐺) “ ℋ) ⊆ ((projℎ‘𝐻) “ ℋ)) | ||
Theorem | pjssdif2i 30515 | The projection subspace of the difference between two projectors. Part 2 of Theorem 29.3 of [Halmos] p. 48 (shortened with pjssposi 30513). (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺)))) | ||
Theorem | pjssdif1i 30516 | A necessary and sufficient condition for the difference between two projectors to be a projector. Part 1 of Theorem 29.3 of [Halmos] p. 48 (shortened with pjssposi 30513). (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐻) −op (projℎ‘𝐺)) ∈ ran projℎ) | ||
Theorem | pjimai 30517 | The image of a projection. Lemma 5 in Daniel Lehmann, "A presentation of Quantum Logic based on an and then connective", https://doi.org/10.48550/arXiv.quant-ph/0701113. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((projℎ‘𝐵) “ 𝐴) = ((𝐴 +ℋ (⊥‘𝐵)) ∩ 𝐵) | ||
Theorem | pjidmcoi 30518 | A projection is idempotent. Property (ii) of [Beran] p. 109. (Contributed by NM, 1-Oct-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((projℎ‘𝐻) ∘ (projℎ‘𝐻)) = (projℎ‘𝐻) | ||
Theorem | pjoccoi 30519 | Composition of projections of a subspace and its orthocomplement. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((projℎ‘𝐻) ∘ (projℎ‘(⊥‘𝐻))) = 0hop | ||
Theorem | pjtoi 30520 | Subspace sum of projection and projection of orthocomplement. (Contributed by NM, 16-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((projℎ‘𝐻) +op (projℎ‘(⊥‘𝐻))) = (projℎ‘ ℋ) | ||
Theorem | pjoci 30521 | Projection of orthocomplement. First part of Theorem 27.3 of [Halmos] p. 45. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((projℎ‘ ℋ) −op (projℎ‘𝐻)) = (projℎ‘(⊥‘𝐻)) | ||
Theorem | pjidmco 30522 | A projection operator is idempotent. Property (ii) of [Beran] p. 109. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → ((projℎ‘𝐻) ∘ (projℎ‘𝐻)) = (projℎ‘𝐻)) | ||
Theorem | dfpjop 30523 | Definition of projection operator in [Hughes] p. 47, except that we do not need linearity to be explicit by virtue of hmoplin 30283. (Contributed by NM, 24-Apr-2006.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ran projℎ ↔ (𝑇 ∈ HrmOp ∧ (𝑇 ∘ 𝑇) = 𝑇)) | ||
Theorem | pjhmopidm 30524 | Two ways to express the set of all projection operators. (Contributed by NM, 24-Apr-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ ran projℎ = {𝑡 ∈ HrmOp ∣ (𝑡 ∘ 𝑡) = 𝑡} | ||
Theorem | elpjidm 30525 | A projection operator is idempotent. Part of Theorem 26.1 of [Halmos] p. 43. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ran projℎ → (𝑇 ∘ 𝑇) = 𝑇) | ||
Theorem | elpjhmop 30526 | A projection operator is Hermitian. Part of Theorem 26.1 of [Halmos] p. 43. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ran projℎ → 𝑇 ∈ HrmOp) | ||
Theorem | 0leopj 30527 | A projector is a positive operator. (Contributed by NM, 27-Sep-2008.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ran projℎ → 0hop ≤op 𝑇) | ||
Theorem | pjadj2 30528 | A projector is self-adjoint. Property (i) of [Beran] p. 109. (Contributed by NM, 3-Jun-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ran projℎ → (adjℎ‘𝑇) = 𝑇) | ||
Theorem | pjadj3 30529 | A projector is self-adjoint. Property (i) of [Beran] p. 109. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (adjℎ‘(projℎ‘𝐻)) = (projℎ‘𝐻)) | ||
Theorem | elpjch 30530 | Reconstruction of the subspace of a projection operator. Part of Theorem 26.2 of [Halmos] p. 44. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ran projℎ → (ran 𝑇 ∈ Cℋ ∧ 𝑇 = (projℎ‘ran 𝑇))) | ||
Theorem | elpjrn 30531* | Reconstruction of the subspace of a projection operator. (Contributed by NM, 24-Apr-2006.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ran projℎ → ran 𝑇 = {𝑥 ∈ ℋ ∣ (𝑇‘𝑥) = 𝑥}) | ||
Theorem | pjinvari 30532 | A closed subspace 𝐻 with projection 𝑇 is invariant under an operator 𝑆 iff 𝑆𝑇 = 𝑇𝑆𝑇. Theorem 27.1 of [Halmos] p. 45. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝐻 ∈ Cℋ & ⊢ 𝑇 = (projℎ‘𝐻) ⇒ ⊢ ((𝑆 ∘ 𝑇): ℋ⟶𝐻 ↔ (𝑆 ∘ 𝑇) = (𝑇 ∘ (𝑆 ∘ 𝑇))) | ||
Theorem | pjin1i 30533 | Lemma for Theorem 1.22 of Mittelstaedt, p. 20. (Contributed by NM, 22-Apr-2001.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (projℎ‘(𝐺 ∩ 𝐻)) = ((projℎ‘𝐺) ∘ (projℎ‘(𝐺 ∩ 𝐻))) | ||
Theorem | pjin2i 30534 | Lemma for Theorem 1.22 of Mittelstaedt, p. 20. (Contributed by NM, 22-Apr-2001.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((projℎ‘𝐺) = ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) ∧ (projℎ‘𝐻) = ((projℎ‘𝐻) ∘ (projℎ‘𝐺))) ↔ (projℎ‘𝐺) = (projℎ‘𝐻)) | ||
Theorem | pjin3i 30535 | Lemma for Theorem 1.22 of Mittelstaedt, p. 20. (Contributed by NM, 22-Apr-2001.) (New usage is discouraged.) |
⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((projℎ‘𝐹) = ((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∧ (projℎ‘𝐹) = ((projℎ‘𝐹) ∘ (projℎ‘𝐻))) ↔ (projℎ‘𝐹) = ((projℎ‘𝐹) ∘ (projℎ‘(𝐺 ∩ 𝐻)))) | ||
Theorem | pjclem1 30536 | Lemma for projection commutation theorem. (Contributed by NM, 16-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐺 𝐶ℋ 𝐻 → ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘(𝐺 ∩ 𝐻))) | ||
Theorem | pjclem2 30537 | Lemma for projection commutation theorem. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐺 𝐶ℋ 𝐻 → ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = ((projℎ‘𝐻) ∘ (projℎ‘𝐺))) | ||
Theorem | pjclem3 30538 | Lemma for projection commutation theorem. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) → ((projℎ‘𝐺) ∘ (projℎ‘(⊥‘𝐻))) = ((projℎ‘(⊥‘𝐻)) ∘ (projℎ‘𝐺))) | ||
Theorem | pjclem4a 30539 | Lemma for projection commutation theorem. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ (𝐺 ∩ 𝐻) → (((projℎ‘𝐺) ∘ (projℎ‘𝐻))‘𝐴) = 𝐴) | ||
Theorem | pjclem4 30540 | Lemma for projection commutation theorem. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) → ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘(𝐺 ∩ 𝐻))) | ||
Theorem | pjci 30541 | Two subspaces commute iff their projections commute. Lemma 4 of [Kalmbach] p. 67. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐺 𝐶ℋ 𝐻 ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = ((projℎ‘𝐻) ∘ (projℎ‘𝐺))) | ||
Theorem | pjcmul1i 30542 | A necessary and sufficient condition for the product of two projectors to be a projector is that the projectors commute. Part 1 of Theorem 1 of [AkhiezerGlazman] p. 65. (Contributed by NM, 3-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) ∈ ran projℎ) | ||
Theorem | pjcmul2i 30543 | The projection subspace of the difference between two projectors. Part 2 of Theorem 1 of [AkhiezerGlazman] p. 65. (Contributed by NM, 3-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = ((projℎ‘𝐻) ∘ (projℎ‘𝐺)) ↔ ((projℎ‘𝐺) ∘ (projℎ‘𝐻)) = (projℎ‘(𝐺 ∩ 𝐻))) | ||
Theorem | pjcohocli 30544 | Closure of composition of projection and Hilbert space operator. (Contributed by NM, 3-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝐴 ∈ ℋ → (((projℎ‘𝐻) ∘ 𝑇)‘𝐴) ∈ 𝐻) | ||
Theorem | pjadj2coi 30545 | Adjoint of double composition of projections. Generalization of special case of Theorem 3.11(viii) of [Beran] p. 106. (Contributed by NM, 1-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻))‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((((projℎ‘𝐻) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐹))‘𝐵))) | ||
Theorem | pj2cocli 30546 | Closure of double composition of projections. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → ((((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻))‘𝐴) ∈ 𝐹) | ||
Theorem | pj3lem1 30547 | Lemma for projection triplet theorem. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ((𝐹 ∩ 𝐺) ∩ 𝐻) → ((((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻))‘𝐴) = 𝐴) | ||
Theorem | pj3si 30548 | Stronger projection triplet theorem. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻)) = (((projℎ‘𝐻) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐹)) ∧ ran (((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻)) ⊆ 𝐺) → (((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻)) = (projℎ‘((𝐹 ∩ 𝐺) ∩ 𝐻))) | ||
Theorem | pj3i 30549 | Projection triplet theorem. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻)) = (((projℎ‘𝐻) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐹)) ∧ (((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻)) = (((projℎ‘𝐺) ∘ (projℎ‘𝐹)) ∘ (projℎ‘𝐻))) → (((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻)) = (projℎ‘((𝐹 ∩ 𝐺) ∩ 𝐻))) | ||
Theorem | pj3cor1i 30550 | Projection triplet corollary. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻)) = (((projℎ‘𝐻) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐹)) ∧ (((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻)) = (((projℎ‘𝐺) ∘ (projℎ‘𝐹)) ∘ (projℎ‘𝐻))) → (((projℎ‘𝐹) ∘ (projℎ‘𝐺)) ∘ (projℎ‘𝐻)) = (((projℎ‘𝐻) ∘ (projℎ‘𝐹)) ∘ (projℎ‘𝐺))) | ||
Theorem | pjs14i 30551 | Theorem S-14 of Watanabe, p. 486. (Contributed by NM, 26-Sep-2001.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Cℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(((projℎ‘𝐻) ∘ (projℎ‘𝐺))‘𝐴)) ≤ (normℎ‘((projℎ‘𝐺)‘𝐴))) | ||
Definition | df-st 30552* | Define the set of states on a Hilbert lattice. Definition of [Kalmbach] p. 266. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
⊢ States = {𝑓 ∈ ((0[,]1) ↑m Cℋ ) ∣ ((𝑓‘ ℋ) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) + (𝑓‘𝑦))))} | ||
Definition | df-hst 30553* | Define the set of complex Hilbert-space-valued states on a Hilbert lattice. Definition of CH-states in [Mayet3] p. 9. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ CHStates = {𝑓 ∈ ( ℋ ↑m Cℋ ) ∣ ((normℎ‘(𝑓‘ ℋ)) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (((𝑓‘𝑥) ·ih (𝑓‘𝑦)) = 0 ∧ (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) +ℎ (𝑓‘𝑦)))))} | ||
Theorem | isst 30554* | Property of a state. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝑆 ∈ States ↔ (𝑆: Cℋ ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))))) | ||
Theorem | ishst 30555* | Property of a complex Hilbert-space-valued state. Definition of CH-states in [Mayet3] p. 9. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ (𝑆 ∈ CHStates ↔ (𝑆: Cℋ ⟶ ℋ ∧ (normℎ‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (((𝑆‘𝑥) ·ih (𝑆‘𝑦)) = 0 ∧ (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) +ℎ (𝑆‘𝑦)))))) | ||
Theorem | sticl 30556 | [0, 1] closure of the value of a state. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) | ||
Theorem | stcl 30557 | Real closure of the value of a state. (Contributed by NM, 24-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ ℝ)) | ||
Theorem | hstcl 30558 | Closure of the value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) | ||
Theorem | hst1a 30559 | Unit value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ (𝑆 ∈ CHStates → (normℎ‘(𝑆‘ ℋ)) = 1) | ||
Theorem | hstel2 30560 | Properties of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → (((𝑆‘𝐴) ·ih (𝑆‘𝐵)) = 0 ∧ (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) +ℎ (𝑆‘𝐵)))) | ||
Theorem | hstorth 30561 | Orthogonality property of a Hilbert-space-valued state. This is a key feature distinguishing it from a real-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → ((𝑆‘𝐴) ·ih (𝑆‘𝐵)) = 0) | ||
Theorem | hstosum 30562 | Orthogonal sum property of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) +ℎ (𝑆‘𝐵))) | ||
Theorem | hstoc 30563 | Sum of a Hilbert-space-valued state of a lattice element and its orthocomplement. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) | ||
Theorem | hstnmoc 30564 | Sum of norms of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) | ||
Theorem | stge0 30565 | The value of a state is nonnegative. (Contributed by NM, 24-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → 0 ≤ (𝑆‘𝐴))) | ||
Theorem | stle1 30566 | The value of a state is less than or equal to one. (Contributed by NM, 24-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ≤ 1)) | ||
Theorem | hstle1 30567 | The norm of the value of a Hilbert-space-valued state is less than or equal to one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘𝐴)) ≤ 1) | ||
Theorem | hst1h 30568 | The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice unit. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) | ||
Theorem | hst0h 30569 | The norm of a Hilbert-space-valued state equals zero iff the state value equals zero. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 0 ↔ (𝑆‘𝐴) = 0ℎ)) | ||
Theorem | hstpyth 30570 | Pythagorean property of a Hilbert-space-valued state for orthogonal vectors 𝐴 and 𝐵. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → ((normℎ‘(𝑆‘(𝐴 ∨ℋ 𝐵)))↑2) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘𝐵))↑2))) | ||
Theorem | hstle 30571 | Ordering property of a Hilbert-space-valued state. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵)) → (normℎ‘(𝑆‘𝐴)) ≤ (normℎ‘(𝑆‘𝐵))) | ||
Theorem | hstles 30572 | Ordering property of a Hilbert-space-valued state. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵)) → ((normℎ‘(𝑆‘𝐴)) = 1 → (normℎ‘(𝑆‘𝐵)) = 1)) | ||
Theorem | hstoh 30573 | A Hilbert-space-valued state orthogonal to the state of the lattice unit is zero. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ∧ ((𝑆‘𝐴) ·ih (𝑆‘ ℋ)) = 0) → (𝑆‘𝐴) = 0ℎ) | ||
Theorem | hst0 30574 | A Hilbert-space-valued state is zero at the zero subspace. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ (𝑆 ∈ CHStates → (𝑆‘0ℋ) = 0ℎ) | ||
Theorem | sthil 30575 | The value of a state at the full Hilbert space. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
⊢ (𝑆 ∈ States → (𝑆‘ ℋ) = 1) | ||
Theorem | stj 30576 | The value of a state on a join. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
⊢ (𝑆 ∈ States → (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵)))) | ||
Theorem | sto1i 30577 | The state of a subspace plus the state of its orthocomplement. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) + (𝑆‘(⊥‘𝐴))) = 1) | ||
Theorem | sto2i 30578 | The state of the orthocomplement. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (𝑆‘(⊥‘𝐴)) = (1 − (𝑆‘𝐴))) | ||
Theorem | stge1i 30579 | If a state is greater than or equal to 1, it is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) ↔ (𝑆‘𝐴) = 1)) | ||
Theorem | stle0i 30580 | If a state is less than or equal to 0, it is 0. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 ↔ (𝑆‘𝐴) = 0)) | ||
Theorem | stlei 30581 | Ordering law for states. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (𝐴 ⊆ 𝐵 → (𝑆‘𝐴) ≤ (𝑆‘𝐵))) | ||
Theorem | stlesi 30582 | Ordering law for states. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (𝐴 ⊆ 𝐵 → ((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1))) | ||
Theorem | stji1i 30583 | Join of components of Sasaki arrow ->1. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (𝑆‘((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵))) = ((𝑆‘(⊥‘𝐴)) + (𝑆‘(𝐴 ∩ 𝐵)))) | ||
Theorem | stm1i 30584 | State of component of unit meet. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘(𝐴 ∩ 𝐵)) = 1 → (𝑆‘𝐴) = 1)) | ||
Theorem | stm1ri 30585 | State of component of unit meet. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘(𝐴 ∩ 𝐵)) = 1 → (𝑆‘𝐵) = 1)) | ||
Theorem | stm1addi 30586 | Sum of states whose meet is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘(𝐴 ∩ 𝐵)) = 1 → ((𝑆‘𝐴) + (𝑆‘𝐵)) = 2)) | ||
Theorem | staddi 30587 | If the sum of 2 states is 2, then each state is 1. (Contributed by NM, 12-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (((𝑆‘𝐴) + (𝑆‘𝐵)) = 2 → (𝑆‘𝐴) = 1)) | ||
Theorem | stm1add3i 30588 | Sum of states whose meet is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘((𝐴 ∩ 𝐵) ∩ 𝐶)) = 1 → (((𝑆‘𝐴) + (𝑆‘𝐵)) + (𝑆‘𝐶)) = 3)) | ||
Theorem | stadd3i 30589 | If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((((𝑆‘𝐴) + (𝑆‘𝐵)) + (𝑆‘𝐶)) = 3 → (𝑆‘𝐴) = 1)) | ||
Theorem | st0 30590 | The state of the zero subspace. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (𝑆 ∈ States → (𝑆‘0ℋ) = 0) | ||
Theorem | strlem1 30591* | Lemma for strong state theorem: if closed subspace 𝐴 is not contained in 𝐵, there is a unit vector 𝑢 in their difference. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (¬ 𝐴 ⊆ 𝐵 → ∃𝑢 ∈ (𝐴 ∖ 𝐵)(normℎ‘𝑢) = 1) | ||
Theorem | strlem2 30592* | Lemma for strong state theorem. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) ⇒ ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) | ||
Theorem | strlem3a 30593* | Lemma for strong state theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → 𝑆 ∈ States) | ||
Theorem | strlem3 30594* | Lemma for strong state theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. This lemma restates the hypotheses in a more convenient form to work with. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → 𝑆 ∈ States) | ||
Theorem | strlem4 30595* | Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (𝑆‘𝐴) = 1) | ||
Theorem | strlem5 30596* | Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (𝑆‘𝐵) < 1) | ||
Theorem | strlem6 30597* | Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → ¬ ((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1)) | ||
Theorem | stri 30598* | Strong state theorem. The states on a Hilbert lattice define an ordering. Remark in [Mayet] p. 370. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑓 ∈ States ((𝑓‘𝐴) = 1 → (𝑓‘𝐵) = 1) → 𝐴 ⊆ 𝐵) | ||
Theorem | strb 30599* | Strong state theorem (bidirectional version). (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑓 ∈ States ((𝑓‘𝐴) = 1 → (𝑓‘𝐵) = 1) ↔ 𝐴 ⊆ 𝐵) | ||
Theorem | hstrlem2 30600* | Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) ⇒ ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((projℎ‘𝐶)‘𝑢)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |