MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispgp Structured version   Visualization version   GIF version

Theorem ispgp 19529
Description: A group is a 𝑃-group if every element has some power of 𝑃 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
ispgp.1 𝑋 = (Base‘𝐺)
ispgp.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
ispgp (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐺   𝑃,𝑛,𝑥   𝑥,𝑋
Allowed substitution hints:   𝑂(𝑥,𝑛)   𝑋(𝑛)

Proof of Theorem ispgp
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑔 = 𝐺)
21fveq2d 6865 . . . . 5 ((𝑝 = 𝑃𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺))
3 ispgp.1 . . . . 5 𝑋 = (Base‘𝐺)
42, 3eqtr4di 2783 . . . 4 ((𝑝 = 𝑃𝑔 = 𝐺) → (Base‘𝑔) = 𝑋)
51fveq2d 6865 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (od‘𝑔) = (od‘𝐺))
6 ispgp.2 . . . . . . . 8 𝑂 = (od‘𝐺)
75, 6eqtr4di 2783 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → (od‘𝑔) = 𝑂)
87fveq1d 6863 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → ((od‘𝑔)‘𝑥) = (𝑂𝑥))
9 simpl 482 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑝 = 𝑃)
109oveq1d 7405 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑝𝑛) = (𝑃𝑛))
118, 10eqeq12d 2746 . . . . 5 ((𝑝 = 𝑃𝑔 = 𝐺) → (((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ (𝑂𝑥) = (𝑃𝑛)))
1211rexbidv 3158 . . . 4 ((𝑝 = 𝑃𝑔 = 𝐺) → (∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
134, 12raleqbidv 3321 . . 3 ((𝑝 = 𝑃𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
14 df-pgp 19467 . . 3 pGrp = {⟨𝑝, 𝑔⟩ ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛))}
1513, 14brab2a 5735 . 2 (𝑃 pGrp 𝐺 ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
16 df-3an 1088 . 2 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)) ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
1715, 16bitr4i 278 1 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cn0 12449  cexp 14033  cprime 16648  Basecbs 17186  Grpcgrp 18872  odcod 19461   pGrp cpgp 19463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-iota 6467  df-fv 6522  df-ov 7393  df-pgp 19467
This theorem is referenced by:  pgpprm  19530  pgpgrp  19531  pgpfi1  19532  subgpgp  19534  pgpfi  19542
  Copyright terms: Public domain W3C validator