MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispgp Structured version   Visualization version   GIF version

Theorem ispgp 19573
Description: A group is a 𝑃-group if every element has some power of 𝑃 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
ispgp.1 𝑋 = (Base‘𝐺)
ispgp.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
ispgp (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐺   𝑃,𝑛,𝑥   𝑥,𝑋
Allowed substitution hints:   𝑂(𝑥,𝑛)   𝑋(𝑛)

Proof of Theorem ispgp
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑔 = 𝐺)
21fveq2d 6880 . . . . 5 ((𝑝 = 𝑃𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺))
3 ispgp.1 . . . . 5 𝑋 = (Base‘𝐺)
42, 3eqtr4di 2788 . . . 4 ((𝑝 = 𝑃𝑔 = 𝐺) → (Base‘𝑔) = 𝑋)
51fveq2d 6880 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (od‘𝑔) = (od‘𝐺))
6 ispgp.2 . . . . . . . 8 𝑂 = (od‘𝐺)
75, 6eqtr4di 2788 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → (od‘𝑔) = 𝑂)
87fveq1d 6878 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → ((od‘𝑔)‘𝑥) = (𝑂𝑥))
9 simpl 482 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑝 = 𝑃)
109oveq1d 7420 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑝𝑛) = (𝑃𝑛))
118, 10eqeq12d 2751 . . . . 5 ((𝑝 = 𝑃𝑔 = 𝐺) → (((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ (𝑂𝑥) = (𝑃𝑛)))
1211rexbidv 3164 . . . 4 ((𝑝 = 𝑃𝑔 = 𝐺) → (∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
134, 12raleqbidv 3325 . . 3 ((𝑝 = 𝑃𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
14 df-pgp 19511 . . 3 pGrp = {⟨𝑝, 𝑔⟩ ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛))}
1513, 14brab2a 5748 . 2 (𝑃 pGrp 𝐺 ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
16 df-3an 1088 . 2 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)) ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
1715, 16bitr4i 278 1 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  0cn0 12501  cexp 14079  cprime 16690  Basecbs 17228  Grpcgrp 18916  odcod 19505   pGrp cpgp 19507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-iota 6484  df-fv 6539  df-ov 7408  df-pgp 19511
This theorem is referenced by:  pgpprm  19574  pgpgrp  19575  pgpfi1  19576  subgpgp  19578  pgpfi  19586
  Copyright terms: Public domain W3C validator