MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispgp Structured version   Visualization version   GIF version

Theorem ispgp 19112
Description: A group is a 𝑃-group if every element has some power of 𝑃 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
ispgp.1 𝑋 = (Base‘𝐺)
ispgp.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
ispgp (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐺   𝑃,𝑛,𝑥   𝑥,𝑋
Allowed substitution hints:   𝑂(𝑥,𝑛)   𝑋(𝑛)

Proof of Theorem ispgp
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑔 = 𝐺)
21fveq2d 6760 . . . . 5 ((𝑝 = 𝑃𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺))
3 ispgp.1 . . . . 5 𝑋 = (Base‘𝐺)
42, 3eqtr4di 2797 . . . 4 ((𝑝 = 𝑃𝑔 = 𝐺) → (Base‘𝑔) = 𝑋)
51fveq2d 6760 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (od‘𝑔) = (od‘𝐺))
6 ispgp.2 . . . . . . . 8 𝑂 = (od‘𝐺)
75, 6eqtr4di 2797 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → (od‘𝑔) = 𝑂)
87fveq1d 6758 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → ((od‘𝑔)‘𝑥) = (𝑂𝑥))
9 simpl 482 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑝 = 𝑃)
109oveq1d 7270 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑝𝑛) = (𝑃𝑛))
118, 10eqeq12d 2754 . . . . 5 ((𝑝 = 𝑃𝑔 = 𝐺) → (((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ (𝑂𝑥) = (𝑃𝑛)))
1211rexbidv 3225 . . . 4 ((𝑝 = 𝑃𝑔 = 𝐺) → (∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
134, 12raleqbidv 3327 . . 3 ((𝑝 = 𝑃𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
14 df-pgp 19053 . . 3 pGrp = {⟨𝑝, 𝑔⟩ ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛))}
1513, 14brab2a 5670 . 2 (𝑃 pGrp 𝐺 ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
16 df-3an 1087 . 2 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)) ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
1715, 16bitr4i 277 1 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cn0 12163  cexp 13710  cprime 16304  Basecbs 16840  Grpcgrp 18492  odcod 19047   pGrp cpgp 19049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-iota 6376  df-fv 6426  df-ov 7258  df-pgp 19053
This theorem is referenced by:  pgpprm  19113  pgpgrp  19114  pgpfi1  19115  subgpgp  19117  pgpfi  19125
  Copyright terms: Public domain W3C validator