![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ispgp | Structured version Visualization version GIF version |
Description: A group is a 𝑃-group if every element has some power of 𝑃 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.) |
Ref | Expression |
---|---|
ispgp.1 | ⊢ 𝑋 = (Base‘𝐺) |
ispgp.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
ispgp | ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) | |
2 | 1 | fveq2d 6895 | . . . . 5 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺)) |
3 | ispgp.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
4 | 2, 3 | eqtr4di 2785 | . . . 4 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = 𝑋) |
5 | 1 | fveq2d 6895 | . . . . . . . 8 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (od‘𝑔) = (od‘𝐺)) |
6 | ispgp.2 | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
7 | 5, 6 | eqtr4di 2785 | . . . . . . 7 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (od‘𝑔) = 𝑂) |
8 | 7 | fveq1d 6893 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → ((od‘𝑔)‘𝑥) = (𝑂‘𝑥)) |
9 | simpl 482 | . . . . . . 7 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑝 = 𝑃) | |
10 | 9 | oveq1d 7429 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (𝑝↑𝑛) = (𝑃↑𝑛)) |
11 | 8, 10 | eqeq12d 2743 | . . . . 5 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ (𝑂‘𝑥) = (𝑃↑𝑛))) |
12 | 11 | rexbidv 3173 | . . . 4 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
13 | 4, 12 | raleqbidv 3337 | . . 3 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
14 | df-pgp 19476 | . . 3 ⊢ pGrp = {⟨𝑝, 𝑔⟩ ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} | |
15 | 13, 14 | brab2a 5765 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
16 | df-3an 1087 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛)) ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) | |
17 | 15, 16 | bitr4i 278 | 1 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℕ0cn0 12494 ↑cexp 14050 ℙcprime 16633 Basecbs 17171 Grpcgrp 18881 odcod 19470 pGrp cpgp 19472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-iota 6494 df-fv 6550 df-ov 7417 df-pgp 19476 |
This theorem is referenced by: pgpprm 19539 pgpgrp 19540 pgpfi1 19541 subgpgp 19543 pgpfi 19551 |
Copyright terms: Public domain | W3C validator |