| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ispgp | Structured version Visualization version GIF version | ||
| Description: A group is a 𝑃-group if every element has some power of 𝑃 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| ispgp.1 | ⊢ 𝑋 = (Base‘𝐺) |
| ispgp.2 | ⊢ 𝑂 = (od‘𝐺) |
| Ref | Expression |
|---|---|
| ispgp | ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) | |
| 2 | 1 | fveq2d 6832 | . . . . 5 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺)) |
| 3 | ispgp.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . 4 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = 𝑋) |
| 5 | 1 | fveq2d 6832 | . . . . . . . 8 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (od‘𝑔) = (od‘𝐺)) |
| 6 | ispgp.2 | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
| 7 | 5, 6 | eqtr4di 2786 | . . . . . . 7 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (od‘𝑔) = 𝑂) |
| 8 | 7 | fveq1d 6830 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → ((od‘𝑔)‘𝑥) = (𝑂‘𝑥)) |
| 9 | simpl 482 | . . . . . . 7 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑝 = 𝑃) | |
| 10 | 9 | oveq1d 7367 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (𝑝↑𝑛) = (𝑃↑𝑛)) |
| 11 | 8, 10 | eqeq12d 2749 | . . . . 5 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ (𝑂‘𝑥) = (𝑃↑𝑛))) |
| 12 | 11 | rexbidv 3157 | . . . 4 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
| 13 | 4, 12 | raleqbidv 3313 | . . 3 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
| 14 | df-pgp 19444 | . . 3 ⊢ pGrp = {〈𝑝, 𝑔〉 ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} | |
| 15 | 13, 14 | brab2a 5712 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
| 16 | df-3an 1088 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛)) ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) | |
| 17 | 15, 16 | bitr4i 278 | 1 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ℕ0cn0 12388 ↑cexp 13970 ℙcprime 16584 Basecbs 17122 Grpcgrp 18848 odcod 19438 pGrp cpgp 19440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-iota 6442 df-fv 6494 df-ov 7355 df-pgp 19444 |
| This theorem is referenced by: pgpprm 19507 pgpgrp 19508 pgpfi1 19509 subgpgp 19511 pgpfi 19519 |
| Copyright terms: Public domain | W3C validator |