![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ispgp | Structured version Visualization version GIF version |
Description: A group is a 𝑃-group if every element has some power of 𝑃 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.) |
Ref | Expression |
---|---|
ispgp.1 | ⊢ 𝑋 = (Base‘𝐺) |
ispgp.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
ispgp | ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) | |
2 | 1 | fveq2d 6892 | . . . . 5 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺)) |
3 | ispgp.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
4 | 2, 3 | eqtr4di 2790 | . . . 4 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = 𝑋) |
5 | 1 | fveq2d 6892 | . . . . . . . 8 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (od‘𝑔) = (od‘𝐺)) |
6 | ispgp.2 | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
7 | 5, 6 | eqtr4di 2790 | . . . . . . 7 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (od‘𝑔) = 𝑂) |
8 | 7 | fveq1d 6890 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → ((od‘𝑔)‘𝑥) = (𝑂‘𝑥)) |
9 | simpl 483 | . . . . . . 7 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑝 = 𝑃) | |
10 | 9 | oveq1d 7420 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (𝑝↑𝑛) = (𝑃↑𝑛)) |
11 | 8, 10 | eqeq12d 2748 | . . . . 5 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ (𝑂‘𝑥) = (𝑃↑𝑛))) |
12 | 11 | rexbidv 3178 | . . . 4 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
13 | 4, 12 | raleqbidv 3342 | . . 3 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
14 | df-pgp 19392 | . . 3 ⊢ pGrp = {⟨𝑝, 𝑔⟩ ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} | |
15 | 13, 14 | brab2a 5767 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
16 | df-3an 1089 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛)) ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) | |
17 | 15, 16 | bitr4i 277 | 1 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 ℕ0cn0 12468 ↑cexp 14023 ℙcprime 16604 Basecbs 17140 Grpcgrp 18815 odcod 19386 pGrp cpgp 19388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-xp 5681 df-iota 6492 df-fv 6548 df-ov 7408 df-pgp 19392 |
This theorem is referenced by: pgpprm 19455 pgpgrp 19456 pgpfi1 19457 subgpgp 19459 pgpfi 19467 |
Copyright terms: Public domain | W3C validator |