Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ispgp | Structured version Visualization version GIF version |
Description: A group is a 𝑃-group if every element has some power of 𝑃 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.) |
Ref | Expression |
---|---|
ispgp.1 | ⊢ 𝑋 = (Base‘𝐺) |
ispgp.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
ispgp | ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) | |
2 | 1 | fveq2d 6721 | . . . . 5 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺)) |
3 | ispgp.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
4 | 2, 3 | eqtr4di 2796 | . . . 4 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = 𝑋) |
5 | 1 | fveq2d 6721 | . . . . . . . 8 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (od‘𝑔) = (od‘𝐺)) |
6 | ispgp.2 | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
7 | 5, 6 | eqtr4di 2796 | . . . . . . 7 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (od‘𝑔) = 𝑂) |
8 | 7 | fveq1d 6719 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → ((od‘𝑔)‘𝑥) = (𝑂‘𝑥)) |
9 | simpl 486 | . . . . . . 7 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑝 = 𝑃) | |
10 | 9 | oveq1d 7228 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (𝑝↑𝑛) = (𝑃↑𝑛)) |
11 | 8, 10 | eqeq12d 2753 | . . . . 5 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ (𝑂‘𝑥) = (𝑃↑𝑛))) |
12 | 11 | rexbidv 3216 | . . . 4 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
13 | 4, 12 | raleqbidv 3313 | . . 3 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
14 | df-pgp 18922 | . . 3 ⊢ pGrp = {〈𝑝, 𝑔〉 ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} | |
15 | 13, 14 | brab2a 5641 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
16 | df-3an 1091 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛)) ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) | |
17 | 15, 16 | bitr4i 281 | 1 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℕ0cn0 12090 ↑cexp 13635 ℙcprime 16228 Basecbs 16760 Grpcgrp 18365 odcod 18916 pGrp cpgp 18918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-iota 6338 df-fv 6388 df-ov 7216 df-pgp 18922 |
This theorem is referenced by: pgpprm 18982 pgpgrp 18983 pgpfi1 18984 subgpgp 18986 pgpfi 18994 |
Copyright terms: Public domain | W3C validator |