MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispgp Structured version   Visualization version   GIF version

Theorem ispgp 19634
Description: A group is a 𝑃-group if every element has some power of 𝑃 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
ispgp.1 𝑋 = (Base‘𝐺)
ispgp.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
ispgp (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐺   𝑃,𝑛,𝑥   𝑥,𝑋
Allowed substitution hints:   𝑂(𝑥,𝑛)   𝑋(𝑛)

Proof of Theorem ispgp
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑔 = 𝐺)
21fveq2d 6924 . . . . 5 ((𝑝 = 𝑃𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺))
3 ispgp.1 . . . . 5 𝑋 = (Base‘𝐺)
42, 3eqtr4di 2798 . . . 4 ((𝑝 = 𝑃𝑔 = 𝐺) → (Base‘𝑔) = 𝑋)
51fveq2d 6924 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (od‘𝑔) = (od‘𝐺))
6 ispgp.2 . . . . . . . 8 𝑂 = (od‘𝐺)
75, 6eqtr4di 2798 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → (od‘𝑔) = 𝑂)
87fveq1d 6922 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → ((od‘𝑔)‘𝑥) = (𝑂𝑥))
9 simpl 482 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑝 = 𝑃)
109oveq1d 7463 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑝𝑛) = (𝑃𝑛))
118, 10eqeq12d 2756 . . . . 5 ((𝑝 = 𝑃𝑔 = 𝐺) → (((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ (𝑂𝑥) = (𝑃𝑛)))
1211rexbidv 3185 . . . 4 ((𝑝 = 𝑃𝑔 = 𝐺) → (∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
134, 12raleqbidv 3354 . . 3 ((𝑝 = 𝑃𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
14 df-pgp 19572 . . 3 pGrp = {⟨𝑝, 𝑔⟩ ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛))}
1513, 14brab2a 5793 . 2 (𝑃 pGrp 𝐺 ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
16 df-3an 1089 . 2 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)) ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
1715, 16bitr4i 278 1 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cn0 12553  cexp 14112  cprime 16718  Basecbs 17258  Grpcgrp 18973  odcod 19566   pGrp cpgp 19568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-iota 6525  df-fv 6581  df-ov 7451  df-pgp 19572
This theorem is referenced by:  pgpprm  19635  pgpgrp  19636  pgpfi1  19637  subgpgp  19639  pgpfi  19647
  Copyright terms: Public domain W3C validator