MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsrpr Structured version   Visualization version   GIF version

Theorem addsrpr 10499
Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.)
Assertion
Ref Expression
addsrpr (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )

Proof of Theorem addsrpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 5594 . . . 4 ((𝐴P𝐵P) → ⟨𝐴, 𝐵⟩ ∈ (P × P))
2 enrex 10491 . . . . 5 ~R ∈ V
32ecelqsi 8355 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (P × P) → [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ))
41, 3syl 17 . . 3 ((𝐴P𝐵P) → [⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ))
5 opelxpi 5594 . . . 4 ((𝐶P𝐷P) → ⟨𝐶, 𝐷⟩ ∈ (P × P))
62ecelqsi 8355 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (P × P) → [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ))
75, 6syl 17 . . 3 ((𝐶P𝐷P) → [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ))
84, 7anim12i 614 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R )))
9 eqid 2823 . . . 4 [⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R
10 eqid 2823 . . . 4 [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R
119, 10pm3.2i 473 . . 3 ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )
12 eqid 2823 . . 3 [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R
13 opeq12 4807 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩)
1413eceq1d 8330 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝐴, 𝐵⟩] ~R )
1514eqeq2d 2834 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ↔ [⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ))
1615anbi1d 631 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )))
17 simpl 485 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑤 = 𝐴)
1817oveq1d 7173 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑤 +P 𝐶) = (𝐴 +P 𝐶))
19 simpr 487 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2019oveq1d 7173 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 +P 𝐷) = (𝐵 +P 𝐷))
2118, 20opeq12d 4813 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩ = ⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩)
2221eceq1d 8330 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
2322eqeq2d 2834 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
2416, 23anbi12d 632 . . . . 5 ((𝑤 = 𝐴𝑣 = 𝐵) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )))
2524spc2egv 3602 . . . 4 ((𝐴P𝐵P) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )))
26 opeq12 4807 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩)
2726eceq1d 8330 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )
2827eqeq2d 2834 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ↔ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ))
2928anbi2d 630 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )))
30 simpl 485 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑢 = 𝐶)
3130oveq2d 7174 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑤 +P 𝑢) = (𝑤 +P 𝐶))
32 simpr 487 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑡 = 𝐷)
3332oveq2d 7174 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 +P 𝑡) = (𝑣 +P 𝐷))
3431, 33opeq12d 4813 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ = ⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩)
3534eceq1d 8330 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )
3635eqeq2d 2834 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ))
3729, 36anbi12d 632 . . . . . 6 ((𝑢 = 𝐶𝑡 = 𝐷) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R )))
3837spc2egv 3602 . . . . 5 ((𝐶P𝐷P) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) → ∃𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
39382eximdv 1920 . . . 4 ((𝐶P𝐷P) → (∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝐶), (𝑣 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
4025, 39sylan9 510 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((([⟨𝐴, 𝐵⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
4111, 12, 40mp2ani 696 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
42 ecexg 8295 . . . 4 ( ~R ∈ V → [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V)
432, 42ax-mp 5 . . 3 [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V
44 simp1 1132 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑥 = [⟨𝐴, 𝐵⟩] ~R )
4544eqeq1d 2825 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑥 = [⟨𝑤, 𝑣⟩] ~R ↔ [⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ))
46 simp2 1133 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑦 = [⟨𝐶, 𝐷⟩] ~R )
4746eqeq1d 2825 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑦 = [⟨𝑢, 𝑡⟩] ~R ↔ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ))
4845, 47anbi12d 632 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → ((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ↔ ([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R )))
49 simp3 1134 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → 𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
5049eqeq1d 2825 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ↔ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
5148, 50anbi12d 632 . . . . 5 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ (([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
52514exbidv 1927 . . . 4 ((𝑥 = [⟨𝐴, 𝐵⟩] ~R𝑦 = [⟨𝐶, 𝐷⟩] ~R𝑧 = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ) → (∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
53 addsrmo 10497 . . . 4 ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
54 df-plr 10481 . . . . 5 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
55 df-nr 10480 . . . . . . . . 9 R = ((P × P) / ~R )
5655eleq2i 2906 . . . . . . . 8 (𝑥R𝑥 ∈ ((P × P) / ~R ))
5755eleq2i 2906 . . . . . . . 8 (𝑦R𝑦 ∈ ((P × P) / ~R ))
5856, 57anbi12i 628 . . . . . . 7 ((𝑥R𝑦R) ↔ (𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )))
5958anbi1i 625 . . . . . 6 (((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) ↔ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
6059oprabbii 7223 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
6154, 60eqtri 2846 . . . 4 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((P × P) / ~R ) ∧ 𝑦 ∈ ((P × P) / ~R )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))}
6252, 53, 61ovig 7298 . . 3 (([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ∈ V) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
6343, 62mp3an3 1446 . 2 (([⟨𝐴, 𝐵⟩] ~R ∈ ((P × P) / ~R ) ∧ [⟨𝐶, 𝐷⟩] ~R ∈ ((P × P) / ~R )) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~R = [⟨𝑤, 𝑣⟩] ~R ∧ [⟨𝐶, 𝐷⟩] ~R = [⟨𝑢, 𝑡⟩] ~R ) ∧ [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R ))
648, 41, 63sylc 65 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  Vcvv 3496  cop 4575   × cxp 5555  (class class class)co 7158  {coprab 7159  [cec 8289   / cqs 8290  Pcnp 10283   +P cpp 10285   ~R cer 10288  Rcnr 10289   +R cplr 10293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-ec 8293  df-qs 8297  df-ni 10296  df-pli 10297  df-mi 10298  df-lti 10299  df-plpq 10332  df-mpq 10333  df-ltpq 10334  df-enq 10335  df-nq 10336  df-erq 10337  df-plq 10338  df-mq 10339  df-1nq 10340  df-rq 10341  df-ltnq 10342  df-np 10405  df-plp 10407  df-ltp 10409  df-enr 10479  df-nr 10480  df-plr 10481
This theorem is referenced by:  addclsr  10507  addcomsr  10511  addasssr  10512  distrsr  10515  m1p1sr  10516  0idsr  10521  ltasr  10524
  Copyright terms: Public domain W3C validator