MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaddsr Structured version   Visualization version   GIF version

Theorem dmaddsr 10109
Description: Domain of addition on signed reals. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmaddsr dom +R = (R × R)

Proof of Theorem dmaddsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plr 10082 . . . 4 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))}
21dmeqi 5464 . . 3 dom +R = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))}
3 dmoprabss 6890 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))} ⊆ (R × R)
42, 3eqsstri 3785 . 2 dom +R ⊆ (R × R)
5 0nsr 10103 . . 3 ¬ ∅ ∈ R
6 addclsr 10107 . . 3 ((𝑥R𝑦R) → (𝑥 +R 𝑦) ∈ R)
75, 6oprssdm 6963 . 2 (R × R) ⊆ dom +R
84, 7eqssi 3769 1 dom +R = (R × R)
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wex 1852  wcel 2145  cop 4323   × cxp 5248  dom cdm 5250  (class class class)co 6794  {coprab 6795  [cec 7895   +P cpp 9886   ~R cer 9889  Rcnr 9890   +R cplr 9894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-inf2 8703
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-oadd 7718  df-omul 7719  df-er 7897  df-ec 7899  df-qs 7903  df-ni 9897  df-pli 9898  df-mi 9899  df-lti 9900  df-plpq 9933  df-mpq 9934  df-ltpq 9935  df-enq 9936  df-nq 9937  df-erq 9938  df-plq 9939  df-mq 9940  df-1nq 9941  df-rq 9942  df-ltnq 9943  df-np 10006  df-plp 10008  df-ltp 10010  df-enr 10080  df-nr 10081  df-plr 10082
This theorem is referenced by:  addcomsr  10111  addasssr  10112  distrsr  10115  ltasr  10124
  Copyright terms: Public domain W3C validator