![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmaddsr | Structured version Visualization version GIF version |
Description: Domain of addition on signed reals. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmaddsr | ⊢ dom +R = (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plr 11088 | . . . 4 ⊢ +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R ∧ 𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))} | |
2 | 1 | dmeqi 5911 | . . 3 ⊢ dom +R = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R ∧ 𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))} |
3 | dmoprabss 7529 | . . 3 ⊢ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R ∧ 𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))} ⊆ (R × R) | |
4 | 2, 3 | eqsstri 4016 | . 2 ⊢ dom +R ⊆ (R × R) |
5 | 0nsr 11110 | . . 3 ⊢ ¬ ∅ ∈ R | |
6 | addclsr 11114 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 +R 𝑦) ∈ R) | |
7 | 5, 6 | oprssdm 7608 | . 2 ⊢ (R × R) ⊆ dom +R |
8 | 4, 7 | eqssi 3998 | 1 ⊢ dom +R = (R × R) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ⟨cop 4638 × cxp 5680 dom cdm 5682 (class class class)co 7426 {coprab 7427 [cec 8729 +P cpp 10892 ~R cer 10895 Rcnr 10896 +R cplr 10900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-omul 8498 df-er 8731 df-ec 8733 df-qs 8737 df-ni 10903 df-pli 10904 df-mi 10905 df-lti 10906 df-plpq 10939 df-mpq 10940 df-ltpq 10941 df-enq 10942 df-nq 10943 df-erq 10944 df-plq 10945 df-mq 10946 df-1nq 10947 df-rq 10948 df-ltnq 10949 df-np 11012 df-plp 11014 df-ltp 11016 df-enr 11086 df-nr 11087 df-plr 11088 |
This theorem is referenced by: addcomsr 11118 addasssr 11119 distrsr 11122 ltasr 11131 |
Copyright terms: Public domain | W3C validator |