![]() |
Metamath
Proof Explorer Theorem List (p. 111 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-nr 11001 | Define class of signed reals. This is a "temporary" set used in the construction of complex numbers df-c 11066, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
⊢ R = ((P × P) / ~R ) | ||
Definition | df-plr 11002* | Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers df-c 11066, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.) |
⊢ +R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑓)〉] ~R ))} | ||
Definition | df-mr 11003* | Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers df-c 11066, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.) |
⊢ ·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))〉] ~R ))} | ||
Definition | df-ltr 11004* | Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers df-c 11066, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | ||
Definition | df-0r 11005 | Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers df-c 11066, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ 0R = [〈1P, 1P〉] ~R | ||
Definition | df-1r 11006 | Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers df-c 11066, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | ||
Definition | df-m1r 11007 | Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers df-c 11066, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | ||
Theorem | enrer 11008 | The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.) |
⊢ ~R Er (P × P) | ||
Theorem | nrex1 11009 | The class of signed reals is a set. Note that a shorter proof is possible using qsex 8722 (and not requiring enrer 11008), but it would add a dependency on ax-rep 5247. (Contributed by Mario Carneiro, 17-Nov-2014.) Extract proof from that of axcnex 11092. (Revised by BJ, 4-Feb-2023.) (New usage is discouraged.) |
⊢ R ∈ V | ||
Theorem | enrbreq 11010 | Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (〈𝐴, 𝐵〉 ~R 〈𝐶, 𝐷〉 ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
Theorem | enreceq 11011 | Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R = [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
Theorem | enrex 11012 | The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
⊢ ~R ∈ V | ||
Theorem | ltrelsr 11013 | Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
⊢ <R ⊆ (R × R) | ||
Theorem | addcmpblnr 11014 | Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈(𝐴 +P 𝐹), (𝐵 +P 𝐺)〉 ~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉)) | ||
Theorem | mulcmpblnrlem 11015 | Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995.) (New usage is discouraged.) |
⊢ (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))) | ||
Theorem | mulcmpblnr 11016 | Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) (New usage is discouraged.) |
⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))〉 ~R 〈((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))〉)) | ||
Theorem | prsrlem1 11017* | Decomposing signed reals into positive reals. Lemma for addsrpr 11020 and mulsrpr 11021. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ (𝐴 = [〈𝑠, 𝑓〉] ~R ∧ 𝐵 = [〈𝑔, ℎ〉] ~R ))) → ((((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑠 ∈ P ∧ 𝑓 ∈ P)) ∧ ((𝑢 ∈ P ∧ 𝑡 ∈ P) ∧ (𝑔 ∈ P ∧ ℎ ∈ P))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ℎ) = (𝑡 +P 𝑔)))) | ||
Theorem | addsrmo 11018* | There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉] ~R )) | ||
Theorem | mulsrmo 11019* | There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))〉] ~R )) | ||
Theorem | addsrpr 11020 | Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R +R [〈𝐶, 𝐷〉] ~R ) = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉] ~R ) | ||
Theorem | mulsrpr 11021 | Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R ·R [〈𝐶, 𝐷〉] ~R ) = [〈((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))〉] ~R ) | ||
Theorem | ltsrpr 11022 | Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
⊢ ([〈𝐴, 𝐵〉] ~R <R [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)) | ||
Theorem | gt0srpr 11023 | Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) | ||
Theorem | 0nsr 11024 | The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
⊢ ¬ ∅ ∈ R | ||
Theorem | 0r 11025 | The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ 0R ∈ R | ||
Theorem | 1sr 11026 | The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ 1R ∈ R | ||
Theorem | m1r 11027 | The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ -1R ∈ R | ||
Theorem | addclsr 11028 | Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) | ||
Theorem | mulclsr 11029 | Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | ||
Theorem | dmaddsr 11030 | Domain of addition on signed reals. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.) |
⊢ dom +R = (R × R) | ||
Theorem | dmmulsr 11031 | Domain of multiplication on signed reals. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.) |
⊢ dom ·R = (R × R) | ||
Theorem | addcomsr 11032 | Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ (𝐴 +R 𝐵) = (𝐵 +R 𝐴) | ||
Theorem | addasssr 11033 | Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)) | ||
Theorem | mulcomsr 11034 | Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴) | ||
Theorem | mulasssr 11035 | Multiplication of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)) | ||
Theorem | distrsr 11036 | Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)) | ||
Theorem | m1p1sr 11037 | Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
⊢ (-1R +R 1R) = 0R | ||
Theorem | m1m1sr 11038 | Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ (-1R ·R -1R) = 1R | ||
Theorem | ltsosr 11039 | Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) (New usage is discouraged.) |
⊢ <R Or R | ||
Theorem | 0lt1sr 11040 | 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) (New usage is discouraged.) |
⊢ 0R <R 1R | ||
Theorem | 1ne0sr 11041 | 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.) (New usage is discouraged.) |
⊢ ¬ 1R = 0R | ||
Theorem | 0idsr 11042 | The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | ||
Theorem | 1idsr 11043 | 1 is an identity element for multiplication. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | ||
Theorem | 00sr 11044 | A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | ||
Theorem | ltasr 11045 | Ordering property of addition. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ (𝐶 ∈ R → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))) | ||
Theorem | pn0sr 11046 | A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | ||
Theorem | negexsr 11047* | Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) | ||
Theorem | recexsrlem 11048* | The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
Theorem | addgt0sr 11049 | The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) | ||
Theorem | mulgt0sr 11050 | The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)) | ||
Theorem | sqgt0sr 11051 | The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴)) | ||
Theorem | recexsr 11052* | The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
Theorem | mappsrpr 11053 | Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ) ↔ 𝐴 ∈ P) | ||
Theorem | ltpsrpr 11054 | Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵) | ||
Theorem | map2psrpr 11055* | Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥 ∈ P (𝐶 +R [〈𝑥, 1P〉] ~R ) = 𝐴) | ||
Theorem | supsrlem 11056* | Lemma for supremum theorem. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑤 ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
Theorem | supsr 11057* | A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
Syntax | cc 11058 | Class of complex numbers. |
class ℂ | ||
Syntax | cr 11059 | Class of real numbers. |
class ℝ | ||
Syntax | cc0 11060 | Extend class notation to include the complex number 0. |
class 0 | ||
Syntax | c1 11061 | Extend class notation to include the complex number 1. |
class 1 | ||
Syntax | ci 11062 | Extend class notation to include the complex number i. |
class i | ||
Syntax | caddc 11063 | Addition on complex numbers. |
class + | ||
Syntax | cltrr 11064 | 'Less than' predicate (defined over real subset of complex numbers). |
class <ℝ | ||
Syntax | cmul 11065 | Multiplication on complex numbers. The token · is a center dot. |
class · | ||
Definition | df-c 11066 | Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 11093. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ ℂ = (R × R) | ||
Definition | df-0 11067 | Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ 0 = 〈0R, 0R〉 | ||
Definition | df-1 11068 | Define the complex number 1. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ 1 = 〈1R, 0R〉 | ||
Definition | df-i 11069 | Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ i = 〈0R, 1R〉 | ||
Definition | df-r 11070 | Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ ℝ = (R × {0R}) | ||
Definition | df-add 11071* | Define addition over complex numbers. (Contributed by NM, 28-May-1995.) (New usage is discouraged.) |
⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | ||
Definition | df-mul 11072* | Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))〉))} | ||
Definition | df-lt 11073* | Define 'less than' on the real subset of complex numbers. Proofs should typically use < instead; see df-ltxr 11203. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | ||
Theorem | opelcn 11074 | Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) | ||
Theorem | opelreal 11075 | Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) | ||
Theorem | elreal 11076* | Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
Theorem | elreal2 11077 | Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | ||
Theorem | 0ncn 11078 | The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
⊢ ¬ ∅ ∈ ℂ | ||
Theorem | ltrelre 11079 | 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ <ℝ ⊆ (ℝ × ℝ) | ||
Theorem | addcnsr 11080 | Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | ||
Theorem | mulcnsr 11081 | Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉) | ||
Theorem | eqresr 11082 | Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) | ||
Theorem | addresr 11083 | Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), 0R〉) | ||
Theorem | mulresr 11084 | Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) | ||
Theorem | ltresr 11085 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ (〈𝐴, 0R〉 <ℝ 〈𝐵, 0R〉 ↔ 𝐴 <R 𝐵) | ||
Theorem | ltresr2 11086 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ (1st ‘𝐴) <R (1st ‘𝐵))) | ||
Theorem | dfcnqs 11087 | Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 8729, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 11066), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
⊢ ℂ = ((R × R) / ◡ E ) | ||
Theorem | addcnsrec 11088 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 11087 and mulcnsrec 11089. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) | ||
Theorem | mulcnsrec 11089 |
Technical trick to permit re-use of some equivalence class lemmas for
operation laws. The trick involves ecid 8728,
which shows that the coset of
the converse membership relation (which is not an equivalence relation)
leaves a set unchanged. See also dfcnqs 11087.
Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi 10789. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) | ||
Theorem | axaddf 11090 | Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 11096. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 11139. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
⊢ + :(ℂ × ℂ)⟶ℂ | ||
Theorem | axmulf 11091 | Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl 11098. This construction-dependent theorem should not be referenced directly; instead, use ax-mulf 11140. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
⊢ · :(ℂ × ℂ)⟶ℂ | ||
Theorem | axcnex 11092 | The complex numbers form a set. This axiom is redundant in the presence of the other axioms (see cnexALT 12920), but the proof requires the axiom of replacement, while the derivation from the construction here does not. Thus, we can avoid ax-rep 5247 in later theorems by invoking Axiom ax-cnex 11116 instead of cnexALT 12920. Use cnex 11141 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
⊢ ℂ ∈ V | ||
Theorem | axresscn 11093 | The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 11117. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
⊢ ℝ ⊆ ℂ | ||
Theorem | ax1cn 11094 | 1 is a complex number. Axiom 2 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 11118. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.) |
⊢ 1 ∈ ℂ | ||
Theorem | axicn 11095 | i is a complex number. Axiom 3 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 11119. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.) |
⊢ i ∈ ℂ | ||
Theorem | axaddcl 11096 | Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 11120 be used later. Instead, in most cases use addcl 11142. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
Theorem | axaddrcl 11097 | Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 11121 be used later. Instead, in most cases use readdcl 11143. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | axmulcl 11098 | Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 11122 be used later. Instead, in most cases use mulcl 11144. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
Theorem | axmulrcl 11099 | Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 11123 be used later. Instead, in most cases use remulcl 11145. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
Theorem | axmulcom 11100 | Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 11124 be used later. Instead, use mulcom 11146. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |