| Metamath
Proof Explorer Theorem List (p. 111 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | caddc 11001 | Addition on complex numbers. |
| class + | ||
| Syntax | cltrr 11002 | 'Less than' predicate (defined over real subset of complex numbers). |
| class <ℝ | ||
| Syntax | cmul 11003 | Multiplication on complex numbers. The token · is a center dot. |
| class · | ||
| Definition | df-c 11004 | Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 11031. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ ℂ = (R × R) | ||
| Definition | df-0 11005 | Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ 0 = 〈0R, 0R〉 | ||
| Definition | df-1 11006 | Define the complex number 1. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ 1 = 〈1R, 0R〉 | ||
| Definition | df-i 11007 | Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ i = 〈0R, 1R〉 | ||
| Definition | df-r 11008 | Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ ℝ = (R × {0R}) | ||
| Definition | df-add 11009* | Define addition over complex numbers. (Contributed by NM, 28-May-1995.) (New usage is discouraged.) |
| ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | ||
| Definition | df-mul 11010* | Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
| ⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))〉))} | ||
| Definition | df-lt 11011* | Define 'less than' on the real subset of complex numbers. Proofs should typically use < instead; see df-ltxr 11143. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | ||
| Theorem | opelcn 11012 | Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
| ⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) | ||
| Theorem | opelreal 11013 | Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) | ||
| Theorem | elreal 11014* | Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
| Theorem | elreal2 11015 | Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | ||
| Theorem | 0ncn 11016 | The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
| ⊢ ¬ ∅ ∈ ℂ | ||
| Theorem | ltrelre 11017 | 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ <ℝ ⊆ (ℝ × ℝ) | ||
| Theorem | addcnsr 11018 | Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | ||
| Theorem | mulcnsr 11019 | Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉) | ||
| Theorem | eqresr 11020 | Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) | ||
| Theorem | addresr 11021 | Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), 0R〉) | ||
| Theorem | mulresr 11022 | Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) | ||
| Theorem | ltresr 11023 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ (〈𝐴, 0R〉 <ℝ 〈𝐵, 0R〉 ↔ 𝐴 <R 𝐵) | ||
| Theorem | ltresr2 11024 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ (1st ‘𝐴) <R (1st ‘𝐵))) | ||
| Theorem | dfcnqs 11025 | Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 8700, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 11004), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| ⊢ ℂ = ((R × R) / ◡ E ) | ||
| Theorem | addcnsrec 11026 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 11025 and mulcnsrec 11027. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) | ||
| Theorem | mulcnsrec 11027 |
Technical trick to permit re-use of some equivalence class lemmas for
operation laws. The trick involves ecid 8699,
which shows that the coset of
the converse membership relation (which is not an equivalence relation)
leaves a set unchanged. See also dfcnqs 11025.
Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi 10727. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) | ||
| Theorem | axaddf 11028 | Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 11034. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 11077. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
| ⊢ + :(ℂ × ℂ)⟶ℂ | ||
| Theorem | axmulf 11029 | Multiplication is an operation on the complex numbers. This is the construction-dependent version of ax-mulf 11078 and it should not be referenced outside the construction. We generally prefer to develop our theory using the less specific mulcl 11082. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
| ⊢ · :(ℂ × ℂ)⟶ℂ | ||
| Theorem | axcnex 11030 | The complex numbers form a set. This axiom is redundant in the presence of the other axioms (see cnexALT 12876), but the proof requires the axiom of replacement, while the derivation from the construction here does not. Thus, we can avoid ax-rep 5215 in later theorems by invoking Axiom ax-cnex 11054 instead of cnexALT 12876. Use cnex 11079 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| ⊢ ℂ ∈ V | ||
| Theorem | axresscn 11031 | The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 11055. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
| ⊢ ℝ ⊆ ℂ | ||
| Theorem | ax1cn 11032 | 1 is a complex number. Axiom 2 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 11056. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.) |
| ⊢ 1 ∈ ℂ | ||
| Theorem | axicn 11033 | i is a complex number. Axiom 3 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 11057. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.) |
| ⊢ i ∈ ℂ | ||
| Theorem | axaddcl 11034 | Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 11058 be used later. Instead, in most cases use addcl 11080. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | axaddrcl 11035 | Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 11059 be used later. Instead, in most cases use readdcl 11081. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | axmulcl 11036 | Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 11060 be used later. Instead, in most cases use mulcl 11082. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | axmulrcl 11037 | Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 11061 be used later. Instead, in most cases use remulcl 11083. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Theorem | axmulcom 11038 | Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 11062 be used later. Instead, use mulcom 11084. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | axaddass 11039 | Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 11063 be used later. Instead, use addass 11085. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | axmulass 11040 | Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 11064. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | axdistr 11041 | Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 11065 be used later. Instead, use adddi 11087. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | axi2m1 11042 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 11066. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
| ⊢ ((i · i) + 1) = 0 | ||
| Theorem | ax1ne0 11043 | 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1ne0 11067. (Contributed by NM, 19-Mar-1996.) (New usage is discouraged.) |
| ⊢ 1 ≠ 0 | ||
| Theorem | ax1rid 11044 | 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid 11102, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11068. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
| Theorem | axrnegex 11045* | Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 11069. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
| Theorem | axrrecex 11046* | Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 11070. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
| Theorem | axcnre 11047* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 11071. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | axpre-lttri 11048 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 11176. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 11072. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
| Theorem | axpre-lttrn 11049 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11177. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11073. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
| Theorem | axpre-ltadd 11050 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axltadd 11178. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 11074. (Contributed by NM, 11-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
| Theorem | axpre-mulgt0 11051 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 11179. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 11075. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
| Theorem | axpre-sup 11052* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 11180. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 11076. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Theorem | wuncn 11053 | A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → ℂ ∈ 𝑈) | ||
| Axiom | ax-cnex 11054 | The complex numbers form a set. This axiom is redundant - see cnexALT 12876- but we provide this axiom because the justification theorem axcnex 11030 does not use ax-rep 5215 even though the redundancy proof does. Proofs should normally use cnex 11079 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.) |
| ⊢ ℂ ∈ V | ||
| Axiom | ax-resscn 11055 | The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, justified by Theorem axresscn 11031. (Contributed by NM, 1-Mar-1995.) |
| ⊢ ℝ ⊆ ℂ | ||
| Axiom | ax-1cn 11056 | 1 is a complex number. Axiom 2 of 22 for real and complex numbers, justified by Theorem ax1cn 11032. (Contributed by NM, 1-Mar-1995.) |
| ⊢ 1 ∈ ℂ | ||
| Axiom | ax-icn 11057 | i is a complex number. Axiom 3 of 22 for real and complex numbers, justified by Theorem axicn 11033. (Contributed by NM, 1-Mar-1995.) |
| ⊢ i ∈ ℂ | ||
| Axiom | ax-addcl 11058 | Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, justified by Theorem axaddcl 11034. Proofs should normally use addcl 11080 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Axiom | ax-addrcl 11059 | Closure law for addition in the real subfield of complex numbers. Axiom 6 of 23 for real and complex numbers, justified by Theorem axaddrcl 11035. Proofs should normally use readdcl 11081 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Axiom | ax-mulcl 11060 | Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, justified by Theorem axmulcl 11036. Proofs should normally use mulcl 11082 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Axiom | ax-mulrcl 11061 | Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, justified by Theorem axmulrcl 11037. Proofs should normally use remulcl 11083 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Axiom | ax-mulcom 11062 | Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, justified by Theorem axmulcom 11038. Proofs should normally use mulcom 11084 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Axiom | ax-addass 11063 | Addition of complex numbers is associative. Axiom 9 of 22 for real and complex numbers, justified by Theorem axaddass 11039. Proofs should normally use addass 11085 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Axiom | ax-mulass 11064 | Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, justified by Theorem axmulass 11040. Proofs should normally use mulass 11086 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Axiom | ax-distr 11065 | Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, justified by Theorem axdistr 11041. Proofs should normally use adddi 11087 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Axiom | ax-i2m1 11066 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by Theorem axi2m1 11042. (Contributed by NM, 29-Jan-1995.) |
| ⊢ ((i · i) + 1) = 0 | ||
| Axiom | ax-1ne0 11067 | 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, justified by Theorem ax1ne0 11043. (Contributed by NM, 29-Jan-1995.) |
| ⊢ 1 ≠ 0 | ||
| Axiom | ax-1rid 11068 | 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11044. Weakened from the original axiom in the form of statement in mulrid 11102, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
| Axiom | ax-rnegex 11069* | Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, justified by Theorem axrnegex 11045. (Contributed by Eric Schmidt, 21-May-2007.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
| Axiom | ax-rrecex 11070* | Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, justified by Theorem axrrecex 11046. (Contributed by Eric Schmidt, 11-Apr-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
| Axiom | ax-cnre 11071* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom 17 of 22 for real and complex numbers, justified by Theorem axcnre 11047. For naming consistency, use cnre 11101 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Axiom | ax-pre-lttri 11072 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, justified by Theorem axpre-lttri 11048. Note: The more general version for extended reals is axlttri 11176. Normally new proofs would use xrlttri 13030. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
| Axiom | ax-pre-lttrn 11073 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, justified by Theorem axpre-lttrn 11049. Note: The more general version for extended reals is axlttrn 11177. Normally new proofs would use lttr 11181. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
| Axiom | ax-pre-ltadd 11074 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, justified by Theorem axpre-ltadd 11050. Normally new proofs would use axltadd 11178. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
| Axiom | ax-pre-mulgt0 11075 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, justified by Theorem axpre-mulgt0 11051. Normally new proofs would use axmulgt0 11179. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
| Axiom | ax-pre-sup 11076* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, justified by Theorem axpre-sup 11052. Note: Normally new proofs would use axsup 11180. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Axiom | ax-addf 11077 |
Addition is an operation on the complex numbers. This deprecated axiom is
provided for historical compatibility but is not a bona fide axiom for
complex numbers (independent of set theory) since it cannot be interpreted
as a first-order or second-order statement (see
https://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific addcl 11080 should be used. Note that uses of ax-addf 11077 can
be eliminated by using the defined operation
(𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 + 𝑦)) in place of +, from which
this axiom (with the defined operation in place of +) follows as a
theorem.
This axiom is justified by Theorem axaddf 11028. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ + :(ℂ × ℂ)⟶ℂ | ||
| Axiom | ax-mulf 11078 |
Multiplication is an operation on the complex numbers. This axiom tells
us that · is defined only on complex
numbers which is analogous to
the way that other operations are defined, for example see subf 11354
or
eff 15980. However, while Metamath can handle this
axiom, if we wish to work
with weaker complex number axioms, we can avoid it by using the less
specific mulcl 11082. Note that uses of ax-mulf 11078 can be eliminated by using
the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) in place of
·, as seen in mpomulf 11093.
This axiom is justified by Theorem axmulf 11029. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ · :(ℂ × ℂ)⟶ℂ | ||
| Theorem | cnex 11079 | Alias for ax-cnex 11054. See also cnexALT 12876. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℂ ∈ V | ||
| Theorem | addcl 11080 | Alias for ax-addcl 11058, for naming consistency with addcli 11110. Use this theorem instead of ax-addcl 11058 or axaddcl 11034. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | readdcl 11081 | Alias for ax-addrcl 11059, for naming consistency with readdcli 11119. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | mulcl 11082 | Alias for ax-mulcl 11060, for naming consistency with mulcli 11111. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | remulcl 11083 | Alias for ax-mulrcl 11061, for naming consistency with remulcli 11120. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Theorem | mulcom 11084 | Alias for ax-mulcom 11062, for naming consistency with mulcomi 11112. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | addass 11085 | Alias for ax-addass 11063, for naming consistency with addassi 11114. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | mulass 11086 | Alias for ax-mulass 11064, for naming consistency with mulassi 11115. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | adddi 11087 | Alias for ax-distr 11065, for naming consistency with adddii 11116. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | recn 11088 | A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | ||
| Theorem | reex 11089 | The real numbers form a set. See also reexALT 12874. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℝ ∈ V | ||
| Theorem | reelprrecn 11090 | Reals are a subset of the pair of real and complex numbers. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℝ ∈ {ℝ, ℂ} | ||
| Theorem | cnelprrecn 11091 | Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℂ ∈ {ℝ, ℂ} | ||
| Theorem | mpoaddf 11092* | Addition is an operation on complex numbers. Version of ax-addf 11077 using maps-to notation, proved from the axioms of set theory and ax-addcl 11058. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ | ||
| Theorem | mpomulf 11093* | Multiplication is an operation on complex numbers. Version of ax-mulf 11078 using maps-to notation, proved from the axioms of set theory and ax-mulcl 11060. (Contributed by GG, 16-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ | ||
| Theorem | elimne0 11094 | Hypothesis for weak deduction theorem to eliminate 𝐴 ≠ 0. (Contributed by NM, 15-May-1999.) |
| ⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 | ||
| Theorem | adddir 11095 | Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
| Theorem | 0cn 11096 | Zero is a complex number. See also 0cnALT 11340. (Contributed by NM, 19-Feb-2005.) |
| ⊢ 0 ∈ ℂ | ||
| Theorem | 0cnd 11097 | Zero is a complex number, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℂ) | ||
| Theorem | c0ex 11098 | Zero is a set. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 0 ∈ V | ||
| Theorem | 1cnd 11099 | One is a complex number, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℂ) | ||
| Theorem | 1ex 11100 | One is a set. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 1 ∈ V | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |