| Metamath
Proof Explorer Theorem List (p. 111 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ltasr 11001 | Ordering property of addition. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
| ⊢ (𝐶 ∈ R → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))) | ||
| Theorem | pn0sr 11002 | A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | ||
| Theorem | negexsr 11003* | Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) | ||
| Theorem | recexsrlem 11004* | The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| ⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
| Theorem | addgt0sr 11005 | The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
| ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) | ||
| Theorem | mulgt0sr 11006 | The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)) | ||
| Theorem | sqgt0sr 11007 | The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴)) | ||
| Theorem | recexsr 11008* | The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
| Theorem | mappsrpr 11009 | Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ) ↔ 𝐴 ∈ P) | ||
| Theorem | ltpsrpr 11010 | Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵) | ||
| Theorem | map2psrpr 11011* | Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥 ∈ P (𝐶 +R [〈𝑥, 1P〉] ~R ) = 𝐴) | ||
| Theorem | supsrlem 11012* | Lemma for supremum theorem. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐵 = {𝑤 ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
| Theorem | supsr 11013* | A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
| Syntax | cc 11014 | Class of complex numbers. |
| class ℂ | ||
| Syntax | cr 11015 | Class of real numbers. |
| class ℝ | ||
| Syntax | cc0 11016 | Extend class notation to include the complex number 0. |
| class 0 | ||
| Syntax | c1 11017 | Extend class notation to include the complex number 1. |
| class 1 | ||
| Syntax | ci 11018 | Extend class notation to include the complex number i. |
| class i | ||
| Syntax | caddc 11019 | Addition on complex numbers. |
| class + | ||
| Syntax | cltrr 11020 | 'Less than' predicate (defined over real subset of complex numbers). |
| class <ℝ | ||
| Syntax | cmul 11021 | Multiplication on complex numbers. The token · is a center dot. |
| class · | ||
| Definition | df-c 11022 | Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 11049. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ ℂ = (R × R) | ||
| Definition | df-0 11023 | Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ 0 = 〈0R, 0R〉 | ||
| Definition | df-1 11024 | Define the complex number 1. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ 1 = 〈1R, 0R〉 | ||
| Definition | df-i 11025 | Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ i = 〈0R, 1R〉 | ||
| Definition | df-r 11026 | Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ ℝ = (R × {0R}) | ||
| Definition | df-add 11027* | Define addition over complex numbers. (Contributed by NM, 28-May-1995.) (New usage is discouraged.) |
| ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | ||
| Definition | df-mul 11028* | Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
| ⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))〉))} | ||
| Definition | df-lt 11029* | Define 'less than' on the real subset of complex numbers. Proofs should typically use < instead; see df-ltxr 11161. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | ||
| Theorem | opelcn 11030 | Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
| ⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) | ||
| Theorem | opelreal 11031 | Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) | ||
| Theorem | elreal 11032* | Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
| Theorem | elreal2 11033 | Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | ||
| Theorem | 0ncn 11034 | The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
| ⊢ ¬ ∅ ∈ ℂ | ||
| Theorem | ltrelre 11035 | 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ <ℝ ⊆ (ℝ × ℝ) | ||
| Theorem | addcnsr 11036 | Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | ||
| Theorem | mulcnsr 11037 | Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉) | ||
| Theorem | eqresr 11038 | Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) | ||
| Theorem | addresr 11039 | Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), 0R〉) | ||
| Theorem | mulresr 11040 | Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) | ||
| Theorem | ltresr 11041 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ (〈𝐴, 0R〉 <ℝ 〈𝐵, 0R〉 ↔ 𝐴 <R 𝐵) | ||
| Theorem | ltresr2 11042 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ (1st ‘𝐴) <R (1st ‘𝐵))) | ||
| Theorem | dfcnqs 11043 | Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 8714, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 11022), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| ⊢ ℂ = ((R × R) / ◡ E ) | ||
| Theorem | addcnsrec 11044 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 11043 and mulcnsrec 11045. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) | ||
| Theorem | mulcnsrec 11045 |
Technical trick to permit re-use of some equivalence class lemmas for
operation laws. The trick involves ecid 8713,
which shows that the coset of
the converse membership relation (which is not an equivalence relation)
leaves a set unchanged. See also dfcnqs 11043.
Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi 10745. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) | ||
| Theorem | axaddf 11046 | Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 11052. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 11095. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
| ⊢ + :(ℂ × ℂ)⟶ℂ | ||
| Theorem | axmulf 11047 | Multiplication is an operation on the complex numbers. This is the construction-dependent version of ax-mulf 11096 and it should not be referenced outside the construction. We generally prefer to develop our theory using the less specific mulcl 11100. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
| ⊢ · :(ℂ × ℂ)⟶ℂ | ||
| Theorem | axcnex 11048 | The complex numbers form a set. This axiom is redundant in the presence of the other axioms (see cnexALT 12894), but the proof requires the axiom of replacement, while the derivation from the construction here does not. Thus, we can avoid ax-rep 5221 in later theorems by invoking Axiom ax-cnex 11072 instead of cnexALT 12894. Use cnex 11097 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| ⊢ ℂ ∈ V | ||
| Theorem | axresscn 11049 | The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 11073. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
| ⊢ ℝ ⊆ ℂ | ||
| Theorem | ax1cn 11050 | 1 is a complex number. Axiom 2 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 11074. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.) |
| ⊢ 1 ∈ ℂ | ||
| Theorem | axicn 11051 | i is a complex number. Axiom 3 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 11075. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.) |
| ⊢ i ∈ ℂ | ||
| Theorem | axaddcl 11052 | Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 11076 be used later. Instead, in most cases use addcl 11098. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | axaddrcl 11053 | Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 11077 be used later. Instead, in most cases use readdcl 11099. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | axmulcl 11054 | Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 11078 be used later. Instead, in most cases use mulcl 11100. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | axmulrcl 11055 | Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 11079 be used later. Instead, in most cases use remulcl 11101. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Theorem | axmulcom 11056 | Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 11080 be used later. Instead, use mulcom 11102. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | axaddass 11057 | Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 11081 be used later. Instead, use addass 11103. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | axmulass 11058 | Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 11082. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | axdistr 11059 | Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 11083 be used later. Instead, use adddi 11105. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | axi2m1 11060 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 11084. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
| ⊢ ((i · i) + 1) = 0 | ||
| Theorem | ax1ne0 11061 | 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1ne0 11085. (Contributed by NM, 19-Mar-1996.) (New usage is discouraged.) |
| ⊢ 1 ≠ 0 | ||
| Theorem | ax1rid 11062 | 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid 11120, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 11086. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
| Theorem | axrnegex 11063* | Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 11087. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
| Theorem | axrrecex 11064* | Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 11088. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
| Theorem | axcnre 11065* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 11089. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | axpre-lttri 11066 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 11194. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 11090. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
| Theorem | axpre-lttrn 11067 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11195. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11091. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
| Theorem | axpre-ltadd 11068 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axltadd 11196. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 11092. (Contributed by NM, 11-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
| Theorem | axpre-mulgt0 11069 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 11197. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 11093. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
| Theorem | axpre-sup 11070* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 11198. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 11094. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Theorem | wuncn 11071 | A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → ℂ ∈ 𝑈) | ||
| Axiom | ax-cnex 11072 | The complex numbers form a set. This axiom is redundant - see cnexALT 12894- but we provide this axiom because the justification theorem axcnex 11048 does not use ax-rep 5221 even though the redundancy proof does. Proofs should normally use cnex 11097 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.) |
| ⊢ ℂ ∈ V | ||
| Axiom | ax-resscn 11073 | The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, justified by Theorem axresscn 11049. (Contributed by NM, 1-Mar-1995.) |
| ⊢ ℝ ⊆ ℂ | ||
| Axiom | ax-1cn 11074 | 1 is a complex number. Axiom 2 of 22 for real and complex numbers, justified by Theorem ax1cn 11050. (Contributed by NM, 1-Mar-1995.) |
| ⊢ 1 ∈ ℂ | ||
| Axiom | ax-icn 11075 | i is a complex number. Axiom 3 of 22 for real and complex numbers, justified by Theorem axicn 11051. (Contributed by NM, 1-Mar-1995.) |
| ⊢ i ∈ ℂ | ||
| Axiom | ax-addcl 11076 | Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, justified by Theorem axaddcl 11052. Proofs should normally use addcl 11098 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Axiom | ax-addrcl 11077 | Closure law for addition in the real subfield of complex numbers. Axiom 6 of 23 for real and complex numbers, justified by Theorem axaddrcl 11053. Proofs should normally use readdcl 11099 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Axiom | ax-mulcl 11078 | Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, justified by Theorem axmulcl 11054. Proofs should normally use mulcl 11100 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Axiom | ax-mulrcl 11079 | Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, justified by Theorem axmulrcl 11055. Proofs should normally use remulcl 11101 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Axiom | ax-mulcom 11080 | Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, justified by Theorem axmulcom 11056. Proofs should normally use mulcom 11102 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Axiom | ax-addass 11081 | Addition of complex numbers is associative. Axiom 9 of 22 for real and complex numbers, justified by Theorem axaddass 11057. Proofs should normally use addass 11103 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Axiom | ax-mulass 11082 | Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, justified by Theorem axmulass 11058. Proofs should normally use mulass 11104 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Axiom | ax-distr 11083 | Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, justified by Theorem axdistr 11059. Proofs should normally use adddi 11105 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Axiom | ax-i2m1 11084 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by Theorem axi2m1 11060. (Contributed by NM, 29-Jan-1995.) |
| ⊢ ((i · i) + 1) = 0 | ||
| Axiom | ax-1ne0 11085 | 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, justified by Theorem ax1ne0 11061. (Contributed by NM, 29-Jan-1995.) |
| ⊢ 1 ≠ 0 | ||
| Axiom | ax-1rid 11086 | 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by Theorem ax1rid 11062. Weakened from the original axiom in the form of statement in mulrid 11120, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
| Axiom | ax-rnegex 11087* | Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, justified by Theorem axrnegex 11063. (Contributed by Eric Schmidt, 21-May-2007.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
| Axiom | ax-rrecex 11088* | Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, justified by Theorem axrrecex 11064. (Contributed by Eric Schmidt, 11-Apr-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
| Axiom | ax-cnre 11089* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom 17 of 22 for real and complex numbers, justified by Theorem axcnre 11065. For naming consistency, use cnre 11119 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Axiom | ax-pre-lttri 11090 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, justified by Theorem axpre-lttri 11066. Note: The more general version for extended reals is axlttri 11194. Normally new proofs would use xrlttri 13048. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
| Axiom | ax-pre-lttrn 11091 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, justified by Theorem axpre-lttrn 11067. Note: The more general version for extended reals is axlttrn 11195. Normally new proofs would use lttr 11199. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
| Axiom | ax-pre-ltadd 11092 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, justified by Theorem axpre-ltadd 11068. Normally new proofs would use axltadd 11196. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
| Axiom | ax-pre-mulgt0 11093 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, justified by Theorem axpre-mulgt0 11069. Normally new proofs would use axmulgt0 11197. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
| Axiom | ax-pre-sup 11094* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, justified by Theorem axpre-sup 11070. Note: Normally new proofs would use axsup 11198. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Axiom | ax-addf 11095 |
Addition is an operation on the complex numbers. This deprecated axiom is
provided for historical compatibility but is not a bona fide axiom for
complex numbers (independent of set theory) since it cannot be interpreted
as a first-order or second-order statement (see
https://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific addcl 11098 should be used. Note that uses of ax-addf 11095 can
be eliminated by using the defined operation
(𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 + 𝑦)) in place of +, from which
this axiom (with the defined operation in place of +) follows as a
theorem.
This axiom is justified by Theorem axaddf 11046. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ + :(ℂ × ℂ)⟶ℂ | ||
| Axiom | ax-mulf 11096 |
Multiplication is an operation on the complex numbers. This axiom tells
us that · is defined only on complex
numbers which is analogous to
the way that other operations are defined, for example see subf 11372
or
eff 15998. However, while Metamath can handle this
axiom, if we wish to work
with weaker complex number axioms, we can avoid it by using the less
specific mulcl 11100. Note that uses of ax-mulf 11096 can be eliminated by using
the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) in place of
·, as seen in mpomulf 11111.
This axiom is justified by Theorem axmulf 11047. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ · :(ℂ × ℂ)⟶ℂ | ||
| Theorem | cnex 11097 | Alias for ax-cnex 11072. See also cnexALT 12894. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℂ ∈ V | ||
| Theorem | addcl 11098 | Alias for ax-addcl 11076, for naming consistency with addcli 11128. Use this theorem instead of ax-addcl 11076 or axaddcl 11052. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | readdcl 11099 | Alias for ax-addrcl 11077, for naming consistency with readdcli 11137. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | mulcl 11100 | Alias for ax-mulcl 11078, for naming consistency with mulcli 11129. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |