Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prcof Structured version   Visualization version   GIF version

Definition df-prcof 49148
Description: Definition of pre-composition functors. The object part of the pre-composition functor given by 𝐹 pre-composes a functor with 𝐹; the morphism part pre-composes a natural transformation with the object part of 𝐹, in terms of function composition. Comments before the definition in § 3 of Chapter X in p. 236 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 3 Nov 2025). The notation −∘F is inspired by this page: https://1lab.dev/Cat.Functor.Compose.html.

The pre-composition functor can also be defined as a transposed curry of the functor composition bifunctor (precofval3 49145). But such definition requires an explicit third category. prcoftposcurfuco 49156 and prcoftposcurfucoa 49157 prove the equivalence. (Contributed by Zhi Wang, 2-Nov-2025.)

Assertion
Ref Expression
df-prcof −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
Distinct variable group:   𝑎,𝑏,𝑑,𝑒,𝑓,𝑘,𝑙,𝑝

Detailed syntax breakdown of Definition df-prcof
StepHypRef Expression
1 cprcof 49147 . 2 class −∘F
2 vp . . 3 setvar 𝑝
3 vf . . 3 setvar 𝑓
4 cvv 3457 . . 3 class V
5 vd . . . 4 setvar 𝑑
62cv 1538 . . . . 5 class 𝑝
7 c1st 7981 . . . . 5 class 1st
86, 7cfv 6528 . . . 4 class (1st𝑝)
9 ve . . . . 5 setvar 𝑒
10 c2nd 7982 . . . . . 6 class 2nd
116, 10cfv 6528 . . . . 5 class (2nd𝑝)
12 vb . . . . . 6 setvar 𝑏
135cv 1538 . . . . . . 7 class 𝑑
149cv 1538 . . . . . . 7 class 𝑒
15 cfunc 17854 . . . . . . 7 class Func
1613, 14, 15co 7400 . . . . . 6 class (𝑑 Func 𝑒)
17 vk . . . . . . . 8 setvar 𝑘
1812cv 1538 . . . . . . . 8 class 𝑏
1917cv 1538 . . . . . . . . 9 class 𝑘
203cv 1538 . . . . . . . . 9 class 𝑓
21 ccofu 17856 . . . . . . . . 9 class func
2219, 20, 21co 7400 . . . . . . . 8 class (𝑘func 𝑓)
2317, 18, 22cmpt 5199 . . . . . . 7 class (𝑘𝑏 ↦ (𝑘func 𝑓))
24 vl . . . . . . . 8 setvar 𝑙
25 va . . . . . . . . 9 setvar 𝑎
2624cv 1538 . . . . . . . . . 10 class 𝑙
27 cnat 17944 . . . . . . . . . . 11 class Nat
2813, 14, 27co 7400 . . . . . . . . . 10 class (𝑑 Nat 𝑒)
2919, 26, 28co 7400 . . . . . . . . 9 class (𝑘(𝑑 Nat 𝑒)𝑙)
3025cv 1538 . . . . . . . . . 10 class 𝑎
3120, 7cfv 6528 . . . . . . . . . 10 class (1st𝑓)
3230, 31ccom 5656 . . . . . . . . 9 class (𝑎 ∘ (1st𝑓))
3325, 29, 32cmpt 5199 . . . . . . . 8 class (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓)))
3417, 24, 18, 18, 33cmpo 7402 . . . . . . 7 class (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))
3523, 34cop 4605 . . . . . 6 class ⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩
3612, 16, 35csb 3872 . . . . 5 class (𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩
379, 11, 36csb 3872 . . . 4 class (2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩
385, 8, 37csb 3872 . . 3 class (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩
392, 3, 4, 4, 38cmpo 7402 . 2 class (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
401, 39wceq 1539 1 wff −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
Colors of variables: wff setvar class
This definition is referenced by:  reldmprcof  49149  prcofvalg  49150
  Copyright terms: Public domain W3C validator