Detailed syntax breakdown of Definition df-prcof
| Step | Hyp | Ref
| Expression |
| 1 | | cprcof 49147 |
. 2
class
−∘F |
| 2 | | vp |
. . 3
setvar 𝑝 |
| 3 | | vf |
. . 3
setvar 𝑓 |
| 4 | | cvv 3457 |
. . 3
class
V |
| 5 | | vd |
. . . 4
setvar 𝑑 |
| 6 | 2 | cv 1538 |
. . . . 5
class 𝑝 |
| 7 | | c1st 7981 |
. . . . 5
class
1st |
| 8 | 6, 7 | cfv 6528 |
. . . 4
class
(1st ‘𝑝) |
| 9 | | ve |
. . . . 5
setvar 𝑒 |
| 10 | | c2nd 7982 |
. . . . . 6
class
2nd |
| 11 | 6, 10 | cfv 6528 |
. . . . 5
class
(2nd ‘𝑝) |
| 12 | | vb |
. . . . . 6
setvar 𝑏 |
| 13 | 5 | cv 1538 |
. . . . . . 7
class 𝑑 |
| 14 | 9 | cv 1538 |
. . . . . . 7
class 𝑒 |
| 15 | | cfunc 17854 |
. . . . . . 7
class
Func |
| 16 | 13, 14, 15 | co 7400 |
. . . . . 6
class (𝑑 Func 𝑒) |
| 17 | | vk |
. . . . . . . 8
setvar 𝑘 |
| 18 | 12 | cv 1538 |
. . . . . . . 8
class 𝑏 |
| 19 | 17 | cv 1538 |
. . . . . . . . 9
class 𝑘 |
| 20 | 3 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
| 21 | | ccofu 17856 |
. . . . . . . . 9
class
∘func |
| 22 | 19, 20, 21 | co 7400 |
. . . . . . . 8
class (𝑘 ∘func
𝑓) |
| 23 | 17, 18, 22 | cmpt 5199 |
. . . . . . 7
class (𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)) |
| 24 | | vl |
. . . . . . . 8
setvar 𝑙 |
| 25 | | va |
. . . . . . . . 9
setvar 𝑎 |
| 26 | 24 | cv 1538 |
. . . . . . . . . 10
class 𝑙 |
| 27 | | cnat 17944 |
. . . . . . . . . . 11
class
Nat |
| 28 | 13, 14, 27 | co 7400 |
. . . . . . . . . 10
class (𝑑 Nat 𝑒) |
| 29 | 19, 26, 28 | co 7400 |
. . . . . . . . 9
class (𝑘(𝑑 Nat 𝑒)𝑙) |
| 30 | 25 | cv 1538 |
. . . . . . . . . 10
class 𝑎 |
| 31 | 20, 7 | cfv 6528 |
. . . . . . . . . 10
class
(1st ‘𝑓) |
| 32 | 30, 31 | ccom 5656 |
. . . . . . . . 9
class (𝑎 ∘ (1st
‘𝑓)) |
| 33 | 25, 29, 32 | cmpt 5199 |
. . . . . . . 8
class (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))) |
| 34 | 17, 24, 18, 18, 33 | cmpo 7402 |
. . . . . . 7
class (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓)))) |
| 35 | 23, 34 | cop 4605 |
. . . . . 6
class
〈(𝑘 ∈
𝑏 ↦ (𝑘 ∘func
𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉 |
| 36 | 12, 16, 35 | csb 3872 |
. . . . 5
class
⦋(𝑑
Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉 |
| 37 | 9, 11, 36 | csb 3872 |
. . . 4
class
⦋(2nd ‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉 |
| 38 | 5, 8, 37 | csb 3872 |
. . 3
class
⦋(1st ‘𝑝) / 𝑑⦌⦋(2nd
‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉 |
| 39 | 2, 3, 4, 4, 38 | cmpo 7402 |
. 2
class (𝑝 ∈ V, 𝑓 ∈ V ↦
⦋(1st ‘𝑝) / 𝑑⦌⦋(2nd
‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉) |
| 40 | 1, 39 | wceq 1539 |
1
wff
−∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦
⦋(1st ‘𝑝) / 𝑑⦌⦋(2nd
‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉) |