Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofvalg Structured version   Visualization version   GIF version

Theorem prcofvalg 49371
Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
Hypotheses
Ref Expression
prcofvalg.b 𝐵 = (𝐷 Func 𝐸)
prcofvalg.n 𝑁 = (𝐷 Nat 𝐸)
prcofvalg.f (𝜑𝐹𝑈)
prcofvalg.p (𝜑𝑃𝑉)
prcofvalg.d (𝜑 → (1st𝑃) = 𝐷)
prcofvalg.e (𝜑 → (2nd𝑃) = 𝐸)
Assertion
Ref Expression
prcofvalg (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Distinct variable groups:   𝐵,𝑎,𝑘,𝑙   𝐷,𝑎,𝑘,𝑙   𝐸,𝑎,𝑘,𝑙   𝐹,𝑎,𝑘,𝑙   𝑃,𝑎,𝑘,𝑙   𝜑,𝑎,𝑘,𝑙
Allowed substitution hints:   𝑈(𝑘,𝑎,𝑙)   𝑁(𝑘,𝑎,𝑙)   𝑉(𝑘,𝑎,𝑙)

Proof of Theorem prcofvalg
Dummy variables 𝑏 𝑑 𝑒 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prcof 49369 . . 3 −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
21a1i 11 . 2 (𝜑 → −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩))
3 fvexd 6837 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) ∈ V)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → 𝑝 = 𝑃)
54fveq2d 6826 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) = (1st𝑃))
6 prcofvalg.d . . . . 5 (𝜑 → (1st𝑃) = 𝐷)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑃) = 𝐷)
85, 7eqtrd 2764 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) = 𝐷)
9 fvexd 6837 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) ∈ V)
104adantr 480 . . . . . 6 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → 𝑝 = 𝑃)
1110fveq2d 6826 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) = (2nd𝑃))
12 prcofvalg.e . . . . . 6 (𝜑 → (2nd𝑃) = 𝐸)
1312ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑃) = 𝐸)
1411, 13eqtrd 2764 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) = 𝐸)
15 ovexd 7384 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) ∈ V)
16 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑑 = 𝐷)
17 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸)
1816, 17oveq12d 7367 . . . . . 6 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
19 prcofvalg.b . . . . . 6 𝐵 = (𝐷 Func 𝐸)
2018, 19eqtr4di 2782 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = 𝐵)
21 simpr 484 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
22 simp-4r 783 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑝 = 𝑃𝑓 = 𝐹))
2322simprd 495 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹)
2423oveq2d 7365 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘func 𝑓) = (𝑘func 𝐹))
2521, 24mpteq12dv 5179 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘𝑏 ↦ (𝑘func 𝑓)) = (𝑘𝐵 ↦ (𝑘func 𝐹)))
2616, 17oveq12d 7367 . . . . . . . . . 10 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = (𝐷 Nat 𝐸))
27 prcofvalg.n . . . . . . . . . 10 𝑁 = (𝐷 Nat 𝐸)
2826, 27eqtr4di 2782 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = 𝑁)
2928oveqdr 7377 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘(𝑑 Nat 𝑒)𝑙) = (𝑘𝑁𝑙))
3023fveq2d 6826 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (1st𝑓) = (1st𝐹))
3130coeq2d 5805 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∘ (1st𝑓)) = (𝑎 ∘ (1st𝐹)))
3229, 31mpteq12dv 5179 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))) = (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))
3321, 21, 32mpoeq123dv 7424 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓)))) = (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
3425, 33opeq12d 4832 . . . . 5 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
3515, 20, 34csbied2 3888 . . . 4 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
369, 14, 35csbied2 3888 . . 3 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
373, 8, 36csbied2 3888 . 2 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
38 prcofvalg.p . . 3 (𝜑𝑃𝑉)
3938elexd 3460 . 2 (𝜑𝑃 ∈ V)
40 prcofvalg.f . . 3 (𝜑𝐹𝑈)
4140elexd 3460 . 2 (𝜑𝐹 ∈ V)
42 opex 5407 . . 3 ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ V
4342a1i 11 . 2 (𝜑 → ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ V)
442, 37, 39, 41, 43ovmpod 7501 1 (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  csb 3851  cop 4583  cmpt 5173  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-prcof 49369
This theorem is referenced by:  prcofvala  49372  prcofelvv  49375  reldmprcof1  49376  reldmprcof2  49377
  Copyright terms: Public domain W3C validator