Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofvalg Structured version   Visualization version   GIF version

Theorem prcofvalg 49487
Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
Hypotheses
Ref Expression
prcofvalg.b 𝐵 = (𝐷 Func 𝐸)
prcofvalg.n 𝑁 = (𝐷 Nat 𝐸)
prcofvalg.f (𝜑𝐹𝑈)
prcofvalg.p (𝜑𝑃𝑉)
prcofvalg.d (𝜑 → (1st𝑃) = 𝐷)
prcofvalg.e (𝜑 → (2nd𝑃) = 𝐸)
Assertion
Ref Expression
prcofvalg (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Distinct variable groups:   𝐵,𝑎,𝑘,𝑙   𝐷,𝑎,𝑘,𝑙   𝐸,𝑎,𝑘,𝑙   𝐹,𝑎,𝑘,𝑙   𝑃,𝑎,𝑘,𝑙   𝜑,𝑎,𝑘,𝑙
Allowed substitution hints:   𝑈(𝑘,𝑎,𝑙)   𝑁(𝑘,𝑎,𝑙)   𝑉(𝑘,𝑎,𝑙)

Proof of Theorem prcofvalg
Dummy variables 𝑏 𝑑 𝑒 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prcof 49485 . . 3 −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
21a1i 11 . 2 (𝜑 → −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩))
3 fvexd 6837 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) ∈ V)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → 𝑝 = 𝑃)
54fveq2d 6826 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) = (1st𝑃))
6 prcofvalg.d . . . . 5 (𝜑 → (1st𝑃) = 𝐷)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑃) = 𝐷)
85, 7eqtrd 2766 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) = 𝐷)
9 fvexd 6837 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) ∈ V)
104adantr 480 . . . . . 6 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → 𝑝 = 𝑃)
1110fveq2d 6826 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) = (2nd𝑃))
12 prcofvalg.e . . . . . 6 (𝜑 → (2nd𝑃) = 𝐸)
1312ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑃) = 𝐸)
1411, 13eqtrd 2766 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) = 𝐸)
15 ovexd 7381 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) ∈ V)
16 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑑 = 𝐷)
17 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸)
1816, 17oveq12d 7364 . . . . . 6 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
19 prcofvalg.b . . . . . 6 𝐵 = (𝐷 Func 𝐸)
2018, 19eqtr4di 2784 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = 𝐵)
21 simpr 484 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
22 simp-4r 783 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑝 = 𝑃𝑓 = 𝐹))
2322simprd 495 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹)
2423oveq2d 7362 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘func 𝑓) = (𝑘func 𝐹))
2521, 24mpteq12dv 5176 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘𝑏 ↦ (𝑘func 𝑓)) = (𝑘𝐵 ↦ (𝑘func 𝐹)))
2616, 17oveq12d 7364 . . . . . . . . . 10 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = (𝐷 Nat 𝐸))
27 prcofvalg.n . . . . . . . . . 10 𝑁 = (𝐷 Nat 𝐸)
2826, 27eqtr4di 2784 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = 𝑁)
2928oveqdr 7374 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘(𝑑 Nat 𝑒)𝑙) = (𝑘𝑁𝑙))
3023fveq2d 6826 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (1st𝑓) = (1st𝐹))
3130coeq2d 5801 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∘ (1st𝑓)) = (𝑎 ∘ (1st𝐹)))
3229, 31mpteq12dv 5176 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))) = (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))
3321, 21, 32mpoeq123dv 7421 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓)))) = (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
3425, 33opeq12d 4830 . . . . 5 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
3515, 20, 34csbied2 3882 . . . 4 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
369, 14, 35csbied2 3882 . . 3 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
373, 8, 36csbied2 3882 . 2 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
38 prcofvalg.p . . 3 (𝜑𝑃𝑉)
3938elexd 3460 . 2 (𝜑𝑃 ∈ V)
40 prcofvalg.f . . 3 (𝜑𝐹𝑈)
4140elexd 3460 . 2 (𝜑𝐹 ∈ V)
42 opex 5402 . . 3 ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ V
4342a1i 11 . 2 (𝜑 → ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ V)
442, 37, 39, 41, 43ovmpod 7498 1 (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  csb 3845  cop 4579  cmpt 5170  ccom 5618  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-prcof 49485
This theorem is referenced by:  prcofvala  49488  prcofelvv  49491  reldmprcof1  49492  reldmprcof2  49493
  Copyright terms: Public domain W3C validator