Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofvalg Structured version   Visualization version   GIF version

Theorem prcofvalg 49150
Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
Hypotheses
Ref Expression
prcofvalg.b 𝐵 = (𝐷 Func 𝐸)
prcofvalg.n 𝑁 = (𝐷 Nat 𝐸)
prcofvalg.f (𝜑𝐹𝑈)
prcofvalg.p (𝜑𝑃𝑉)
prcofvalg.d (𝜑 → (1st𝑃) = 𝐷)
prcofvalg.e (𝜑 → (2nd𝑃) = 𝐸)
Assertion
Ref Expression
prcofvalg (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Distinct variable groups:   𝐵,𝑎,𝑘,𝑙   𝐷,𝑎,𝑘,𝑙   𝐸,𝑎,𝑘,𝑙   𝐹,𝑎,𝑘,𝑙   𝑃,𝑎,𝑘,𝑙   𝜑,𝑎,𝑘,𝑙
Allowed substitution hints:   𝑈(𝑘,𝑎,𝑙)   𝑁(𝑘,𝑎,𝑙)   𝑉(𝑘,𝑎,𝑙)

Proof of Theorem prcofvalg
Dummy variables 𝑏 𝑑 𝑒 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prcof 49148 . . 3 −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
21a1i 11 . 2 (𝜑 → −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩))
3 fvexd 6888 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) ∈ V)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → 𝑝 = 𝑃)
54fveq2d 6877 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) = (1st𝑃))
6 prcofvalg.d . . . . 5 (𝜑 → (1st𝑃) = 𝐷)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑃) = 𝐷)
85, 7eqtrd 2769 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) = 𝐷)
9 fvexd 6888 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) ∈ V)
104adantr 480 . . . . . 6 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → 𝑝 = 𝑃)
1110fveq2d 6877 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) = (2nd𝑃))
12 prcofvalg.e . . . . . 6 (𝜑 → (2nd𝑃) = 𝐸)
1312ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑃) = 𝐸)
1411, 13eqtrd 2769 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) = 𝐸)
15 ovexd 7435 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) ∈ V)
16 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑑 = 𝐷)
17 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸)
1816, 17oveq12d 7418 . . . . . 6 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
19 prcofvalg.b . . . . . 6 𝐵 = (𝐷 Func 𝐸)
2018, 19eqtr4di 2787 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = 𝐵)
21 simpr 484 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
22 simp-4r 783 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑝 = 𝑃𝑓 = 𝐹))
2322simprd 495 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹)
2423oveq2d 7416 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘func 𝑓) = (𝑘func 𝐹))
2521, 24mpteq12dv 5205 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘𝑏 ↦ (𝑘func 𝑓)) = (𝑘𝐵 ↦ (𝑘func 𝐹)))
2616, 17oveq12d 7418 . . . . . . . . . 10 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = (𝐷 Nat 𝐸))
27 prcofvalg.n . . . . . . . . . 10 𝑁 = (𝐷 Nat 𝐸)
2826, 27eqtr4di 2787 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = 𝑁)
2928oveqdr 7428 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘(𝑑 Nat 𝑒)𝑙) = (𝑘𝑁𝑙))
3023fveq2d 6877 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (1st𝑓) = (1st𝐹))
3130coeq2d 5840 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∘ (1st𝑓)) = (𝑎 ∘ (1st𝐹)))
3229, 31mpteq12dv 5205 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))) = (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))
3321, 21, 32mpoeq123dv 7477 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓)))) = (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
3425, 33opeq12d 4855 . . . . 5 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
3515, 20, 34csbied2 3909 . . . 4 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
369, 14, 35csbied2 3909 . . 3 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
373, 8, 36csbied2 3909 . 2 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
38 prcofvalg.p . . 3 (𝜑𝑃𝑉)
3938elexd 3481 . 2 (𝜑𝑃 ∈ V)
40 prcofvalg.f . . 3 (𝜑𝐹𝑈)
4140elexd 3481 . 2 (𝜑𝐹 ∈ V)
42 opex 5437 . . 3 ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ V
4342a1i 11 . 2 (𝜑 → ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ V)
442, 37, 39, 41, 43ovmpod 7554 1 (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  csb 3872  cop 4605  cmpt 5199  ccom 5656  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  2nd c2nd 7982   Func cfunc 17854  func ccofu 17856   Nat cnat 17944   −∘F cprcof 49147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-iota 6481  df-fun 6530  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-prcof 49148
This theorem is referenced by:  prcofvala  49151  prcofelvv  49153  reldmprcof1  49154  reldmprcof2  49155
  Copyright terms: Public domain W3C validator