Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofvalg Structured version   Visualization version   GIF version

Theorem prcofvalg 49358
Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
Hypotheses
Ref Expression
prcofvalg.b 𝐵 = (𝐷 Func 𝐸)
prcofvalg.n 𝑁 = (𝐷 Nat 𝐸)
prcofvalg.f (𝜑𝐹𝑈)
prcofvalg.p (𝜑𝑃𝑉)
prcofvalg.d (𝜑 → (1st𝑃) = 𝐷)
prcofvalg.e (𝜑 → (2nd𝑃) = 𝐸)
Assertion
Ref Expression
prcofvalg (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Distinct variable groups:   𝐵,𝑎,𝑘,𝑙   𝐷,𝑎,𝑘,𝑙   𝐸,𝑎,𝑘,𝑙   𝐹,𝑎,𝑘,𝑙   𝑃,𝑎,𝑘,𝑙   𝜑,𝑎,𝑘,𝑙
Allowed substitution hints:   𝑈(𝑘,𝑎,𝑙)   𝑁(𝑘,𝑎,𝑙)   𝑉(𝑘,𝑎,𝑙)

Proof of Theorem prcofvalg
Dummy variables 𝑏 𝑑 𝑒 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prcof 49356 . . 3 −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
21a1i 11 . 2 (𝜑 → −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩))
3 fvexd 6855 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) ∈ V)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → 𝑝 = 𝑃)
54fveq2d 6844 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) = (1st𝑃))
6 prcofvalg.d . . . . 5 (𝜑 → (1st𝑃) = 𝐷)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑃) = 𝐷)
85, 7eqtrd 2764 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) = 𝐷)
9 fvexd 6855 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) ∈ V)
104adantr 480 . . . . . 6 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → 𝑝 = 𝑃)
1110fveq2d 6844 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) = (2nd𝑃))
12 prcofvalg.e . . . . . 6 (𝜑 → (2nd𝑃) = 𝐸)
1312ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑃) = 𝐸)
1411, 13eqtrd 2764 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) = 𝐸)
15 ovexd 7404 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) ∈ V)
16 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑑 = 𝐷)
17 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸)
1816, 17oveq12d 7387 . . . . . 6 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
19 prcofvalg.b . . . . . 6 𝐵 = (𝐷 Func 𝐸)
2018, 19eqtr4di 2782 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = 𝐵)
21 simpr 484 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
22 simp-4r 783 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑝 = 𝑃𝑓 = 𝐹))
2322simprd 495 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹)
2423oveq2d 7385 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘func 𝑓) = (𝑘func 𝐹))
2521, 24mpteq12dv 5189 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘𝑏 ↦ (𝑘func 𝑓)) = (𝑘𝐵 ↦ (𝑘func 𝐹)))
2616, 17oveq12d 7387 . . . . . . . . . 10 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = (𝐷 Nat 𝐸))
27 prcofvalg.n . . . . . . . . . 10 𝑁 = (𝐷 Nat 𝐸)
2826, 27eqtr4di 2782 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = 𝑁)
2928oveqdr 7397 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘(𝑑 Nat 𝑒)𝑙) = (𝑘𝑁𝑙))
3023fveq2d 6844 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (1st𝑓) = (1st𝐹))
3130coeq2d 5816 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∘ (1st𝑓)) = (𝑎 ∘ (1st𝐹)))
3229, 31mpteq12dv 5189 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))) = (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))
3321, 21, 32mpoeq123dv 7444 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓)))) = (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
3425, 33opeq12d 4841 . . . . 5 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
3515, 20, 34csbied2 3896 . . . 4 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
369, 14, 35csbied2 3896 . . 3 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
373, 8, 36csbied2 3896 . 2 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
38 prcofvalg.p . . 3 (𝜑𝑃𝑉)
3938elexd 3468 . 2 (𝜑𝑃 ∈ V)
40 prcofvalg.f . . 3 (𝜑𝐹𝑈)
4140elexd 3468 . 2 (𝜑𝐹 ∈ V)
42 opex 5419 . . 3 ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ V
4342a1i 11 . 2 (𝜑 → ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ V)
442, 37, 39, 41, 43ovmpod 7521 1 (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  csb 3859  cop 4591  cmpt 5183  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946   Func cfunc 17796  func ccofu 17798   Nat cnat 17886   −∘F cprcof 49355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-prcof 49356
This theorem is referenced by:  prcofvala  49359  prcofelvv  49362  reldmprcof1  49363  reldmprcof2  49364
  Copyright terms: Public domain W3C validator