| Step | Hyp | Ref
| Expression |
| 1 | | df-prcof 49148 |
. . 3
⊢
−∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦
⦋(1st ‘𝑝) / 𝑑⦌⦋(2nd
‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 →
−∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦
⦋(1st ‘𝑝) / 𝑑⦌⦋(2nd
‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉)) |
| 3 | | fvexd 6888 |
. . 3
⊢ ((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) → (1st ‘𝑝) ∈ V) |
| 4 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) → 𝑝 = 𝑃) |
| 5 | 4 | fveq2d 6877 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) → (1st ‘𝑝) = (1st ‘𝑃)) |
| 6 | | prcofvalg.d |
. . . . 5
⊢ (𝜑 → (1st
‘𝑃) = 𝐷) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) → (1st ‘𝑃) = 𝐷) |
| 8 | 5, 7 | eqtrd 2769 |
. . 3
⊢ ((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) → (1st ‘𝑝) = 𝐷) |
| 9 | | fvexd 6888 |
. . . 4
⊢ (((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd ‘𝑝) ∈ V) |
| 10 | 4 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → 𝑝 = 𝑃) |
| 11 | 10 | fveq2d 6877 |
. . . . 5
⊢ (((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd ‘𝑝) = (2nd ‘𝑃)) |
| 12 | | prcofvalg.e |
. . . . . 6
⊢ (𝜑 → (2nd
‘𝑃) = 𝐸) |
| 13 | 12 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd ‘𝑃) = 𝐸) |
| 14 | 11, 13 | eqtrd 2769 |
. . . 4
⊢ (((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd ‘𝑝) = 𝐸) |
| 15 | | ovexd 7435 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) ∈ V) |
| 16 | | simplr 768 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑑 = 𝐷) |
| 17 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸) |
| 18 | 16, 17 | oveq12d 7418 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸)) |
| 19 | | prcofvalg.b |
. . . . . 6
⊢ 𝐵 = (𝐷 Func 𝐸) |
| 20 | 18, 19 | eqtr4di 2787 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = 𝐵) |
| 21 | | simpr 484 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) |
| 22 | | simp-4r 783 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) |
| 23 | 22 | simprd 495 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹) |
| 24 | 23 | oveq2d 7416 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘 ∘func 𝑓) = (𝑘 ∘func 𝐹)) |
| 25 | 21, 24 | mpteq12dv 5205 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)) = (𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹))) |
| 26 | 16, 17 | oveq12d 7418 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = (𝐷 Nat 𝐸)) |
| 27 | | prcofvalg.n |
. . . . . . . . . 10
⊢ 𝑁 = (𝐷 Nat 𝐸) |
| 28 | 26, 27 | eqtr4di 2787 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = 𝑁) |
| 29 | 28 | oveqdr 7428 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘(𝑑 Nat 𝑒)𝑙) = (𝑘𝑁𝑙)) |
| 30 | 23 | fveq2d 6877 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (1st ‘𝑓) = (1st ‘𝐹)) |
| 31 | 30 | coeq2d 5840 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∘ (1st ‘𝑓)) = (𝑎 ∘ (1st ‘𝐹))) |
| 32 | 29, 31 | mpteq12dv 5205 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))) = (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹)))) |
| 33 | 21, 21, 32 | mpoeq123dv 7477 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓)))) = (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))) |
| 34 | 25, 33 | opeq12d 4855 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉 = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 35 | 15, 20, 34 | csbied2 3909 |
. . . 4
⊢ ((((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → ⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉 = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 36 | 9, 14, 35 | csbied2 3909 |
. . 3
⊢ (((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → ⦋(2nd
‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉 = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 37 | 3, 8, 36 | csbied2 3909 |
. 2
⊢ ((𝜑 ∧ (𝑝 = 𝑃 ∧ 𝑓 = 𝐹)) → ⦋(1st
‘𝑝) / 𝑑⦌⦋(2nd
‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉 = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 38 | | prcofvalg.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ 𝑉) |
| 39 | 38 | elexd 3481 |
. 2
⊢ (𝜑 → 𝑃 ∈ V) |
| 40 | | prcofvalg.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| 41 | 40 | elexd 3481 |
. 2
⊢ (𝜑 → 𝐹 ∈ V) |
| 42 | | opex 5437 |
. . 3
⊢
〈(𝑘 ∈
𝐵 ↦ (𝑘 ∘func
𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉 ∈
V |
| 43 | 42 | a1i 11 |
. 2
⊢ (𝜑 → 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉 ∈
V) |
| 44 | 2, 37, 39, 41, 43 | ovmpod 7554 |
1
⊢ (𝜑 → (𝑃 −∘F 𝐹) = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |