Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofvalg Structured version   Visualization version   GIF version

Theorem prcofvalg 49355
Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
Hypotheses
Ref Expression
prcofvalg.b 𝐵 = (𝐷 Func 𝐸)
prcofvalg.n 𝑁 = (𝐷 Nat 𝐸)
prcofvalg.f (𝜑𝐹𝑈)
prcofvalg.p (𝜑𝑃𝑉)
prcofvalg.d (𝜑 → (1st𝑃) = 𝐷)
prcofvalg.e (𝜑 → (2nd𝑃) = 𝐸)
Assertion
Ref Expression
prcofvalg (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Distinct variable groups:   𝐵,𝑎,𝑘,𝑙   𝐷,𝑎,𝑘,𝑙   𝐸,𝑎,𝑘,𝑙   𝐹,𝑎,𝑘,𝑙   𝑃,𝑎,𝑘,𝑙   𝜑,𝑎,𝑘,𝑙
Allowed substitution hints:   𝑈(𝑘,𝑎,𝑙)   𝑁(𝑘,𝑎,𝑙)   𝑉(𝑘,𝑎,𝑙)

Proof of Theorem prcofvalg
Dummy variables 𝑏 𝑑 𝑒 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prcof 49353 . . 3 −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
21a1i 11 . 2 (𝜑 → −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩))
3 fvexd 6875 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) ∈ V)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → 𝑝 = 𝑃)
54fveq2d 6864 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) = (1st𝑃))
6 prcofvalg.d . . . . 5 (𝜑 → (1st𝑃) = 𝐷)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑃) = 𝐷)
85, 7eqtrd 2765 . . 3 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) = 𝐷)
9 fvexd 6875 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) ∈ V)
104adantr 480 . . . . . 6 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → 𝑝 = 𝑃)
1110fveq2d 6864 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) = (2nd𝑃))
12 prcofvalg.e . . . . . 6 (𝜑 → (2nd𝑃) = 𝐸)
1312ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑃) = 𝐸)
1411, 13eqtrd 2765 . . . 4 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) = 𝐸)
15 ovexd 7424 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) ∈ V)
16 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑑 = 𝐷)
17 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸)
1816, 17oveq12d 7407 . . . . . 6 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
19 prcofvalg.b . . . . . 6 𝐵 = (𝐷 Func 𝐸)
2018, 19eqtr4di 2783 . . . . 5 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) = 𝐵)
21 simpr 484 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
22 simp-4r 783 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑝 = 𝑃𝑓 = 𝐹))
2322simprd 495 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹)
2423oveq2d 7405 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘func 𝑓) = (𝑘func 𝐹))
2521, 24mpteq12dv 5196 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘𝑏 ↦ (𝑘func 𝑓)) = (𝑘𝐵 ↦ (𝑘func 𝐹)))
2616, 17oveq12d 7407 . . . . . . . . . 10 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = (𝐷 Nat 𝐸))
27 prcofvalg.n . . . . . . . . . 10 𝑁 = (𝐷 Nat 𝐸)
2826, 27eqtr4di 2783 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Nat 𝑒) = 𝑁)
2928oveqdr 7417 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘(𝑑 Nat 𝑒)𝑙) = (𝑘𝑁𝑙))
3023fveq2d 6864 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (1st𝑓) = (1st𝐹))
3130coeq2d 5828 . . . . . . . 8 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∘ (1st𝑓)) = (𝑎 ∘ (1st𝐹)))
3229, 31mpteq12dv 5196 . . . . . . 7 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))) = (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))
3321, 21, 32mpoeq123dv 7466 . . . . . 6 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓)))) = (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
3425, 33opeq12d 4847 . . . . 5 (((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
3515, 20, 34csbied2 3901 . . . 4 ((((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) ∧ 𝑒 = 𝐸) → (𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
369, 14, 35csbied2 3901 . . 3 (((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) ∧ 𝑑 = 𝐷) → (2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
373, 8, 36csbied2 3901 . 2 ((𝜑 ∧ (𝑝 = 𝑃𝑓 = 𝐹)) → (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
38 prcofvalg.p . . 3 (𝜑𝑃𝑉)
3938elexd 3474 . 2 (𝜑𝑃 ∈ V)
40 prcofvalg.f . . 3 (𝜑𝐹𝑈)
4140elexd 3474 . 2 (𝜑𝐹 ∈ V)
42 opex 5426 . . 3 ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ V
4342a1i 11 . 2 (𝜑 → ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ ∈ V)
442, 37, 39, 41, 43ovmpod 7543 1 (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  csb 3864  cop 4597  cmpt 5190  ccom 5644  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969   Func cfunc 17822  func ccofu 17824   Nat cnat 17912   −∘F cprcof 49352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-prcof 49353
This theorem is referenced by:  prcofvala  49356  prcofelvv  49359  reldmprcof1  49360  reldmprcof2  49361
  Copyright terms: Public domain W3C validator