| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > precofval3 | Structured version Visualization version GIF version | ||
| Description: Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| precoffunc.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| precoffunc.b | ⊢ 𝐵 = (𝐷 Func 𝐸) |
| precoffunc.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| precoffunc.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| precoffunc.e | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| precoffunc.k | ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) |
| precoffunc.l | ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) |
| precofval3.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| precofval3.o | ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) |
| precofval3.m | ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘〈𝐹, 𝐺〉)) |
| Ref | Expression |
|---|---|
| precofval3 | ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | precoffunc.k | . . . 4 ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) | |
| 2 | precoffunc.b | . . . . 5 ⊢ 𝐵 = (𝐷 Func 𝐸) | |
| 3 | 2 | mpteq1i 5216 | . . . 4 ⊢ (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)) = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)) |
| 4 | 1, 3 | eqtrdi 2787 | . . 3 ⊢ (𝜑 → 𝐾 = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) |
| 5 | precoffunc.l | . . . 4 ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) | |
| 6 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝐷 Func 𝐸)) |
| 7 | precoffunc.n | . . . . . . . 8 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑁 = (𝐷 Nat 𝐸)) |
| 9 | 8 | oveqd 7427 | . . . . . 6 ⊢ (𝜑 → (𝑔𝑁ℎ) = (𝑔(𝐷 Nat 𝐸)ℎ)) |
| 10 | relfunc 17880 | . . . . . . . . . 10 ⊢ Rel (𝐶 Func 𝐷) | |
| 11 | precoffunc.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 12 | brrelex12 5711 | . . . . . . . . . 10 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V)) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 14 | op1stg 8005 | . . . . . . . . 9 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘〈𝐹, 𝐺〉) = 𝐹) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 16 | 15 | eqcomd 2742 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (1st ‘〈𝐹, 𝐺〉)) |
| 17 | 16 | coeq2d 5847 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∘ 𝐹) = (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))) |
| 18 | 9, 17 | mpteq12dv 5212 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉)))) |
| 19 | 6, 6, 18 | mpoeq123dv 7487 | . . . 4 ⊢ (𝜑 → (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹))) = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))) |
| 20 | 5, 19 | eqtrd 2771 | . . 3 ⊢ (𝜑 → 𝐿 = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))) |
| 21 | 4, 20 | opeq12d 4862 | . 2 ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))〉) |
| 22 | precofval3.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 23 | precoffunc.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 24 | precofval3.o | . . 3 ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) | |
| 25 | df-br 5125 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
| 26 | 11, 25 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 27 | precoffunc.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
| 28 | precofval3.m | . . 3 ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘〈𝐹, 𝐺〉)) | |
| 29 | 22, 23, 24, 26, 27, 28 | precofval2 49260 | . 2 ⊢ (𝜑 → 𝑀 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))〉) |
| 30 | 21, 29 | eqtr4d 2774 | 1 ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 〈cop 4612 class class class wbr 5124 ↦ cmpt 5206 ∘ ccom 5663 Rel wrel 5664 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1st c1st 7991 Catccat 17681 Func cfunc 17872 ∘func ccofu 17874 Nat cnat 17962 FuncCat cfuc 17963 curryF ccurf 18227 swapF cswapf 49156 ∘F cfuco 49207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-func 17876 df-cofu 17878 df-nat 17964 df-fuc 17965 df-xpc 18189 df-curf 18231 df-swapf 49157 df-fuco 49208 |
| This theorem is referenced by: precoffunc 49263 prcoftposcurfuco 49273 |
| Copyright terms: Public domain | W3C validator |