| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > precofval3 | Structured version Visualization version GIF version | ||
| Description: Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| precoffunc.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| precoffunc.b | ⊢ 𝐵 = (𝐷 Func 𝐸) |
| precoffunc.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| precoffunc.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| precoffunc.e | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| precoffunc.k | ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) |
| precoffunc.l | ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) |
| precofval3.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| precofval3.o | ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) |
| precofval3.m | ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘〈𝐹, 𝐺〉)) |
| Ref | Expression |
|---|---|
| precofval3 | ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | precoffunc.k | . . . 4 ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) | |
| 2 | precoffunc.b | . . . . 5 ⊢ 𝐵 = (𝐷 Func 𝐸) | |
| 3 | 2 | mpteq1i 5180 | . . . 4 ⊢ (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)) = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)) |
| 4 | 1, 3 | eqtrdi 2781 | . . 3 ⊢ (𝜑 → 𝐾 = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) |
| 5 | precoffunc.l | . . . 4 ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) | |
| 6 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝐷 Func 𝐸)) |
| 7 | precoffunc.n | . . . . . . . 8 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑁 = (𝐷 Nat 𝐸)) |
| 9 | 8 | oveqd 7358 | . . . . . 6 ⊢ (𝜑 → (𝑔𝑁ℎ) = (𝑔(𝐷 Nat 𝐸)ℎ)) |
| 10 | relfunc 17761 | . . . . . . . . . 10 ⊢ Rel (𝐶 Func 𝐷) | |
| 11 | precoffunc.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 12 | brrelex12 5666 | . . . . . . . . . 10 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V)) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 14 | op1stg 7928 | . . . . . . . . 9 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘〈𝐹, 𝐺〉) = 𝐹) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 16 | 15 | eqcomd 2736 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (1st ‘〈𝐹, 𝐺〉)) |
| 17 | 16 | coeq2d 5800 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∘ 𝐹) = (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))) |
| 18 | 9, 17 | mpteq12dv 5176 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉)))) |
| 19 | 6, 6, 18 | mpoeq123dv 7416 | . . . 4 ⊢ (𝜑 → (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹))) = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))) |
| 20 | 5, 19 | eqtrd 2765 | . . 3 ⊢ (𝜑 → 𝐿 = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))) |
| 21 | 4, 20 | opeq12d 4831 | . 2 ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))〉) |
| 22 | precofval3.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 23 | precoffunc.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 24 | precofval3.o | . . 3 ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) | |
| 25 | df-br 5090 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
| 26 | 11, 25 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 27 | precoffunc.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
| 28 | precofval3.m | . . 3 ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘〈𝐹, 𝐺〉)) | |
| 29 | 22, 23, 24, 26, 27, 28 | precofval2 49380 | . 2 ⊢ (𝜑 → 𝑀 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))〉) |
| 30 | 21, 29 | eqtr4d 2768 | 1 ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 〈cop 4580 class class class wbr 5089 ↦ cmpt 5170 ∘ ccom 5618 Rel wrel 5619 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 1st c1st 7914 Catccat 17562 Func cfunc 17753 ∘func ccofu 17755 Nat cnat 17843 FuncCat cfuc 17844 curryF ccurf 18108 swapF cswapf 49270 ∘F cfuco 49327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-hom 17177 df-cco 17178 df-cat 17566 df-cid 17567 df-func 17757 df-cofu 17759 df-nat 17845 df-fuc 17846 df-xpc 18070 df-curf 18112 df-swapf 49271 df-fuco 49328 |
| This theorem is referenced by: precoffunc 49383 prcoftposcurfuco 49394 |
| Copyright terms: Public domain | W3C validator |