| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > precofval3 | Structured version Visualization version GIF version | ||
| Description: Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| precoffunc.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| precoffunc.b | ⊢ 𝐵 = (𝐷 Func 𝐸) |
| precoffunc.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| precoffunc.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| precoffunc.e | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| precoffunc.k | ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) |
| precoffunc.l | ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) |
| precofval3.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| precofval3.o | ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄swapF𝑅)))) |
| precofval3.m | ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘〈𝐹, 𝐺〉)) |
| Ref | Expression |
|---|---|
| precofval3 | ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | precoffunc.k | . . . 4 ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) | |
| 2 | precoffunc.b | . . . . 5 ⊢ 𝐵 = (𝐷 Func 𝐸) | |
| 3 | 2 | mpteq1i 5237 | . . . 4 ⊢ (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)) = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)) |
| 4 | 1, 3 | eqtrdi 2792 | . . 3 ⊢ (𝜑 → 𝐾 = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) |
| 5 | precoffunc.l | . . . 4 ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) | |
| 6 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝐷 Func 𝐸)) |
| 7 | precoffunc.n | . . . . . . . 8 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑁 = (𝐷 Nat 𝐸)) |
| 9 | 8 | oveqd 7449 | . . . . . 6 ⊢ (𝜑 → (𝑔𝑁ℎ) = (𝑔(𝐷 Nat 𝐸)ℎ)) |
| 10 | relfunc 17908 | . . . . . . . . . 10 ⊢ Rel (𝐶 Func 𝐷) | |
| 11 | precoffunc.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 12 | brrelex12 5736 | . . . . . . . . . 10 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V)) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 14 | op1stg 8027 | . . . . . . . . 9 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘〈𝐹, 𝐺〉) = 𝐹) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 16 | 15 | eqcomd 2742 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (1st ‘〈𝐹, 𝐺〉)) |
| 17 | 16 | coeq2d 5872 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∘ 𝐹) = (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))) |
| 18 | 9, 17 | mpteq12dv 5232 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉)))) |
| 19 | 6, 6, 18 | mpoeq123dv 7509 | . . . 4 ⊢ (𝜑 → (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹))) = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))) |
| 20 | 5, 19 | eqtrd 2776 | . . 3 ⊢ (𝜑 → 𝐿 = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))) |
| 21 | 4, 20 | opeq12d 4880 | . 2 ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))〉) |
| 22 | precofval3.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 23 | precoffunc.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 24 | precofval3.o | . . 3 ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄swapF𝑅)))) | |
| 25 | df-br 5143 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
| 26 | 11, 25 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 27 | precoffunc.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
| 28 | precofval3.m | . . 3 ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘〈𝐹, 𝐺〉)) | |
| 29 | 22, 23, 24, 26, 27, 28 | precofval2 49087 | . 2 ⊢ (𝜑 → 𝑀 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))〉) |
| 30 | 21, 29 | eqtr4d 2779 | 1 ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 〈cop 4631 class class class wbr 5142 ↦ cmpt 5224 ∘ ccom 5688 Rel wrel 5689 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 1st c1st 8013 Catccat 17708 Func cfunc 17900 ∘func ccofu 17902 Nat cnat 17990 FuncCat cfuc 17991 curryF ccurf 18256 swapFcswapf 48983 ∘F cfuco 49034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-slot 17220 df-ndx 17232 df-base 17249 df-hom 17322 df-cco 17323 df-cat 17712 df-cid 17713 df-func 17904 df-cofu 17906 df-nat 17992 df-fuc 17993 df-xpc 18218 df-curf 18260 df-swapf 48984 df-fuco 49035 |
| This theorem is referenced by: precoffunc 49090 |
| Copyright terms: Public domain | W3C validator |