| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > precofval3 | Structured version Visualization version GIF version | ||
| Description: Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| precoffunc.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| precoffunc.b | ⊢ 𝐵 = (𝐷 Func 𝐸) |
| precoffunc.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| precoffunc.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| precoffunc.e | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| precoffunc.k | ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) |
| precoffunc.l | ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) |
| precofval3.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| precofval3.o | ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) |
| precofval3.m | ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘〈𝐹, 𝐺〉)) |
| Ref | Expression |
|---|---|
| precofval3 | ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | precoffunc.k | . . . 4 ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) | |
| 2 | precoffunc.b | . . . . 5 ⊢ 𝐵 = (𝐷 Func 𝐸) | |
| 3 | 2 | mpteq1i 5186 | . . . 4 ⊢ (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)) = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)) |
| 4 | 1, 3 | eqtrdi 2780 | . . 3 ⊢ (𝜑 → 𝐾 = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) |
| 5 | precoffunc.l | . . . 4 ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) | |
| 6 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝐷 Func 𝐸)) |
| 7 | precoffunc.n | . . . . . . . 8 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑁 = (𝐷 Nat 𝐸)) |
| 9 | 8 | oveqd 7370 | . . . . . 6 ⊢ (𝜑 → (𝑔𝑁ℎ) = (𝑔(𝐷 Nat 𝐸)ℎ)) |
| 10 | relfunc 17787 | . . . . . . . . . 10 ⊢ Rel (𝐶 Func 𝐷) | |
| 11 | precoffunc.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 12 | brrelex12 5675 | . . . . . . . . . 10 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V)) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 14 | op1stg 7943 | . . . . . . . . 9 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘〈𝐹, 𝐺〉) = 𝐹) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 16 | 15 | eqcomd 2735 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (1st ‘〈𝐹, 𝐺〉)) |
| 17 | 16 | coeq2d 5809 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∘ 𝐹) = (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))) |
| 18 | 9, 17 | mpteq12dv 5182 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉)))) |
| 19 | 6, 6, 18 | mpoeq123dv 7428 | . . . 4 ⊢ (𝜑 → (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹))) = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))) |
| 20 | 5, 19 | eqtrd 2764 | . . 3 ⊢ (𝜑 → 𝐿 = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))) |
| 21 | 4, 20 | opeq12d 4835 | . 2 ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))〉) |
| 22 | precofval3.q | . . 3 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 23 | precoffunc.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 24 | precofval3.o | . . 3 ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) | |
| 25 | df-br 5096 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
| 26 | 11, 25 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 27 | precoffunc.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
| 28 | precofval3.m | . . 3 ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘〈𝐹, 𝐺〉)) | |
| 29 | 22, 23, 24, 26, 27, 28 | precofval2 49342 | . 2 ⊢ (𝜑 → 𝑀 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 〈𝐹, 𝐺〉)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))〉) |
| 30 | 21, 29 | eqtr4d 2767 | 1 ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 class class class wbr 5095 ↦ cmpt 5176 ∘ ccom 5627 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1st c1st 7929 Catccat 17588 Func cfunc 17779 ∘func ccofu 17781 Nat cnat 17869 FuncCat cfuc 17870 curryF ccurf 18134 swapF cswapf 49232 ∘F cfuco 49289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-hom 17203 df-cco 17204 df-cat 17592 df-cid 17593 df-func 17783 df-cofu 17785 df-nat 17871 df-fuc 17872 df-xpc 18096 df-curf 18138 df-swapf 49233 df-fuco 49290 |
| This theorem is referenced by: precoffunc 49345 prcoftposcurfuco 49356 |
| Copyright terms: Public domain | W3C validator |