Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmprcof Structured version   Visualization version   GIF version

Theorem reldmprcof 49486
Description: The domain of −∘F is a relation. (Contributed by Zhi Wang, 2-Nov-2025.)
Assertion
Ref Expression
reldmprcof Rel dom −∘F

Proof of Theorem reldmprcof
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑓 𝑘 𝑙 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prcof 49485 . 2 −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
21reldmmpo 7480 1 Rel dom −∘F
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  csb 3845  cop 4579  cmpt 5170  dom cdm 5614  ccom 5618  Rel wrel 5619  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-dm 5624  df-oprab 7350  df-mpo 7351  df-prcof 49485
This theorem is referenced by:  reldmprcof1  49492  reldmprcof2  49493  prcof1  49499
  Copyright terms: Public domain W3C validator