| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmprcof | Structured version Visualization version GIF version | ||
| Description: The domain of −∘F is a relation. (Contributed by Zhi Wang, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| reldmprcof | ⊢ Rel dom −∘F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-prcof 49369 | . 2 ⊢ −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑑⦌⦋(2nd ‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉) | |
| 2 | 1 | reldmmpo 7483 | 1 ⊢ Rel dom −∘F |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ⦋csb 3851 〈cop 4583 ↦ cmpt 5173 dom cdm 5619 ∘ ccom 5623 Rel wrel 5624 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1st c1st 7922 2nd c2nd 7923 Func cfunc 17761 ∘func ccofu 17763 Nat cnat 17851 −∘F cprcof 49368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-dm 5629 df-oprab 7353 df-mpo 7354 df-prcof 49369 |
| This theorem is referenced by: reldmprcof1 49376 reldmprcof2 49377 prcof1 49383 |
| Copyright terms: Public domain | W3C validator |