Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmprcof Structured version   Visualization version   GIF version

Theorem reldmprcof 49357
Description: The domain of −∘F is a relation. (Contributed by Zhi Wang, 2-Nov-2025.)
Assertion
Ref Expression
reldmprcof Rel dom −∘F

Proof of Theorem reldmprcof
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑓 𝑘 𝑙 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prcof 49356 . 2 −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
21reldmmpo 7503 1 Rel dom −∘F
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3444  csb 3859  cop 4591  cmpt 5183  dom cdm 5631  ccom 5635  Rel wrel 5636  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946   Func cfunc 17796  func ccofu 17798   Nat cnat 17886   −∘F cprcof 49355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-dm 5641  df-oprab 7373  df-mpo 7374  df-prcof 49356
This theorem is referenced by:  reldmprcof1  49363  reldmprcof2  49364  prcof1  49370
  Copyright terms: Public domain W3C validator