Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmprcof Structured version   Visualization version   GIF version

Theorem reldmprcof 49354
Description: The domain of −∘F is a relation. (Contributed by Zhi Wang, 2-Nov-2025.)
Assertion
Ref Expression
reldmprcof Rel dom −∘F

Proof of Theorem reldmprcof
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑓 𝑘 𝑙 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prcof 49353 . 2 −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
21reldmmpo 7525 1 Rel dom −∘F
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3450  csb 3864  cop 4597  cmpt 5190  dom cdm 5640  ccom 5644  Rel wrel 5645  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969   Func cfunc 17822  func ccofu 17824   Nat cnat 17912   −∘F cprcof 49352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-dm 5650  df-oprab 7393  df-mpo 7394  df-prcof 49353
This theorem is referenced by:  reldmprcof1  49360  reldmprcof2  49361  prcof1  49367
  Copyright terms: Public domain W3C validator