Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmprcof Structured version   Visualization version   GIF version

Theorem reldmprcof 49149
Description: The domain of −∘F is a relation. (Contributed by Zhi Wang, 2-Nov-2025.)
Assertion
Ref Expression
reldmprcof Rel dom −∘F

Proof of Theorem reldmprcof
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑓 𝑘 𝑙 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prcof 49148 . 2 −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
21reldmmpo 7536 1 Rel dom −∘F
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3457  csb 3872  cop 4605  cmpt 5199  dom cdm 5652  ccom 5656  Rel wrel 5657  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  2nd c2nd 7982   Func cfunc 17854  func ccofu 17856   Nat cnat 17944   −∘F cprcof 49147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5118  df-opab 5180  df-xp 5658  df-rel 5659  df-dm 5662  df-oprab 7404  df-mpo 7405  df-prcof 49148
This theorem is referenced by:  reldmprcof1  49154  reldmprcof2  49155  prcof1  49161
  Copyright terms: Public domain W3C validator