| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmprcof | Structured version Visualization version GIF version | ||
| Description: The domain of −∘F is a relation. (Contributed by Zhi Wang, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| reldmprcof | ⊢ Rel dom −∘F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-prcof 49148 | . 2 ⊢ −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑑⦌⦋(2nd ‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉) | |
| 2 | 1 | reldmmpo 7536 | 1 ⊢ Rel dom −∘F |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3457 ⦋csb 3872 〈cop 4605 ↦ cmpt 5199 dom cdm 5652 ∘ ccom 5656 Rel wrel 5657 ‘cfv 6528 (class class class)co 7400 ∈ cmpo 7402 1st c1st 7981 2nd c2nd 7982 Func cfunc 17854 ∘func ccofu 17856 Nat cnat 17944 −∘F cprcof 49147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-xp 5658 df-rel 5659 df-dm 5662 df-oprab 7404 df-mpo 7405 df-prcof 49148 |
| This theorem is referenced by: reldmprcof1 49154 reldmprcof2 49155 prcof1 49161 |
| Copyright terms: Public domain | W3C validator |