HomeHome Metamath Proof Explorer
Theorem List (p. 494 of 498)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30854)
  Hilbert Space Explorer  Hilbert Space Explorer
(30855-32377)
  Users' Mathboxes  Users' Mathboxes
(32378-49798)
 

Theorem List for Metamath Proof Explorer - 49301-49400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdiag2f1lem 49301 Lemma for diag2f1 49302. The converse is trivial (fveq2 6861). (Contributed by Zhi Wang, 21-Oct-2025.)
𝐿 = (𝐶Δfunc𝐷)    &   𝐴 = (Base‘𝐶)    &   𝐵 = (Base‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝐵 ≠ ∅)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑋𝐻𝑌))       (𝜑 → (((𝑋(2nd𝐿)𝑌)‘𝐹) = ((𝑋(2nd𝐿)𝑌)‘𝐺) → 𝐹 = 𝐺))
 
Theoremdiag2f1 49302 If 𝐵 is non-empty, the morphism part of a diagonal functor is injective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025.)
𝐿 = (𝐶Δfunc𝐷)    &   𝐴 = (Base‘𝐶)    &   𝐵 = (Base‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝐵 ≠ ∅)    &   𝑁 = (𝐷 Nat 𝐶)       (𝜑 → (𝑋(2nd𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)))
 
21.49.15.18  Functor composition bifunctors
 
Theoremfucofulem1 49303 Lemma for proving functor theorems. (Contributed by Zhi Wang, 25-Sep-2025.)
(𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))    &   ((𝜑 ∧ (𝜃𝜏)) → 𝜂)    &   𝜒    &   ((𝜑𝜂) → 𝜃)    &   ((𝜑𝜂) → 𝜏)       (𝜑 → (𝜓𝜂))
 
Theoremfucofulem2 49304* Lemma for proving functor theorems. Maybe consider eufnfv 7206 to prove the uniqueness of a functor. (Contributed by Zhi Wang, 25-Sep-2025.)
𝐵 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))    &   𝐻 = (Hom ‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))       (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
 
Theoremfuco2el 49305 Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
(⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩ ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿𝐹𝑅𝐺))
 
Theoremfuco2eld 49306 Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝑊 = (𝑆 × 𝑅))    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝐾𝑆𝐿)    &   (𝜑𝐹𝑅𝐺)       (𝜑𝑈𝑊)
 
Theoremfuco2eld2 49307 Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝑊 = (𝑆 × 𝑅))    &   (𝜑𝑈𝑊)    &   Rel 𝑆    &   Rel 𝑅       (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
 
Theoremfuco2eld3 49308 Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝑊 = (𝑆 × 𝑅))    &   (𝜑𝑈𝑊)    &   Rel 𝑆    &   Rel 𝑅       (𝜑 → ((1st ‘(1st𝑈))𝑆(2nd ‘(1st𝑈)) ∧ (1st ‘(2nd𝑈))𝑅(2nd ‘(2nd𝑈))))
 
Syntaxcfuco 49309 Extend class notation with functor composition bifunctors.
class F
 
Definitiondf-fuco 49310* Definition of functor composition bifunctors. Given three categories 𝐶, 𝐷, and 𝐸, (⟨𝐶, 𝐷⟩ ∘F 𝐸) is a functor from the product category of two categories of functors to a category of functors (fucofunc 49352). The object part maps two functors to their composition (fuco11 49319 and fuco11b 49330). The morphism part defines the "composition" of two natural transformations (fuco22 49332) into another natural transformation (fuco22nat 49339) such that a "cube-like" diagram commutes. The naturality property also gives an alternate definition (fuco23a 49345). Note that such "composition" is different from fucco 17934 because they "compose" along different "axes". (Contributed by Zhi Wang, 29-Sep-2025.)
F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
 
Theoremfucofvalg 49311* Value of the function giving the functor composition bifunctor. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑𝑃𝑈)    &   (𝜑 → (1st𝑃) = 𝐶)    &   (𝜑 → (2nd𝑃) = 𝐷)    &   (𝜑𝐸𝑉)    &   (𝜑 → (𝑃F 𝐸) = )    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑 = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
 
Theoremfucofval 49312* Value of the function giving the functor composition bifunctor. Hypotheses fucofval.c and fucofval.d are not redundant (fucofvalne 49318). (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑 = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
 
Theoremfucoelvv 49313 A functor composition bifunctor is an ordered pair. Enables 1st2ndb 8011. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )       (𝜑 ∈ (V × V))
 
Theoremfuco1 49314 The object part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑𝑂 = ( ∘func𝑊))
 
Theoremfucof1 49315 The object part of the functor composition bifunctor maps ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑𝑂:𝑊⟶(𝐶 Func 𝐸))
 
Theoremfuco2 49316* The morphism part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑𝑃 = (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))))
 
Theoremfucofn2 49317 The morphism part of the functor composition bifunctor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑𝑃 Fn (𝑊 × 𝑊))
 
Theoremfucofvalne 49318* Value of the function giving the functor composition bifunctor, if 𝐶 or 𝐷 are not sets. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑 → ¬ (𝐶 ∈ V ∧ 𝐷 ∈ V))    &   (𝜑𝐸 ∈ Cat)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑 ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
 
Theoremfuco11 49319 The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)       (𝜑 → (𝑂𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))
 
Theoremfuco11cl 49320 The object part of the functor composition bifunctor maps into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)       (𝜑 → (𝑂𝑈) ∈ (𝐶 Func 𝐸))
 
Theoremfuco11a 49321* The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   𝐵 = (Base‘𝐶)       (𝜑 → (𝑂𝑈) = ⟨(𝐾𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
 
Theoremfuco112 49322* The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   𝐵 = (Base‘𝐶)       (𝜑 → (2nd ‘(𝑂𝑈)) = (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))))
 
Theoremfuco111 49323 The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. (Contributed by Zhi Wang, 2-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)       (𝜑 → (1st ‘(𝑂𝑈)) = (𝐾𝐹))
 
Theoremfuco111x 49324 The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. An object is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑋 ∈ (Base‘𝐶))       (𝜑 → ((1st ‘(𝑂𝑈))‘𝑋) = (𝐾‘(𝐹𝑋)))
 
Theoremfuco112x 49325 The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))       (𝜑 → (𝑋(2nd ‘(𝑂𝑈))𝑌) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))
 
Theoremfuco112xa 49326 The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))    &   (𝜑𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌))       (𝜑 → ((𝑋(2nd ‘(𝑂𝑈))𝑌)‘𝐴) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐴)))
 
Theoremfuco11id 49327 The identity morphism of the mapped object. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   𝑄 = (𝐶 FuncCat 𝐸)    &   𝐼 = (Id‘𝑄)    &    1 = (Id‘𝐸)       (𝜑 → (𝐼‘(𝑂𝑈)) = ( 1 ∘ (𝐾𝐹)))
 
Theoremfuco11idx 49328 The identity morphism of the mapped object. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   𝑄 = (𝐶 FuncCat 𝐸)    &   𝐼 = (Id‘𝑄)    &    1 = (Id‘𝐸)    &   (𝜑𝑋 ∈ (Base‘𝐶))       (𝜑 → ((𝐼‘(𝑂𝑈))‘𝑋) = ( 1 ‘(𝐾‘(𝐹𝑋))))
 
Theoremfuco21 49329* The morphism part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑀(𝐶 Func 𝐷)𝑁)    &   (𝜑𝑅(𝐷 Func 𝐸)𝑆)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)       (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
 
Theoremfuco11b 49330 The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 11-Oct-2025.)
(𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐷 Func 𝐸))       (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))
 
Theoremfuco11bALT 49331 Alternate proof of fuco11b 49330. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐷 Func 𝐸))       (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))
 
Theoremfuco22 49332* The morphism part of the functor composition bifunctor. See also fuco22a 49343. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))       (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))))
 
Theoremfucofn22 49333 The morphism part of the functor composition bifunctor maps two natural transformations to a function on a base set. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))       (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) Fn (Base‘𝐶))
 
Theoremfuco23 49334 The morphism part of the functor composition bifunctor. See also fuco23a 49345. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))       (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
 
Theoremfuco22natlem1 49335 Lemma for fuco22nat 49339. The commutative square of natural transformation 𝐴 in category 𝐷, mapped to category 𝐸 by the morphism part 𝐿 of the functor. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)       (𝜑 → ((((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
 
Theoremfuco22natlem2 49336 Lemma for fuco22nat 49339. The commutative square of natural transformation 𝐵 in category 𝐸, combined with the commutative square of fuco22natlem1 49335. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))       (𝜑 → (((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑌)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌)))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))))
 
Theoremfuco22natlem3 49337 Combine fuco22natlem2 49336 with fuco23 49334. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)       (𝜑 → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌)(⟨((𝐾𝐹)‘𝑋), ((𝐾𝐹)‘𝑌)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌))((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻)) = (((((𝑀𝑋)𝑆(𝑀𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻)(⟨((𝐾𝐹)‘𝑋), ((𝑅𝑀)‘𝑋)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋)))
 
Theoremfuco22natlem 49338 The composed natural transformation is a natural transformation. Use fuco22nat 49339 instead. (New usage is discouraged.) (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)       (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
 
Theoremfuco22nat 49339 The composed natural transformation is a natural transformation. (Contributed by Zhi Wang, 2-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))    &   (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))    &   (𝜑𝑈 = ⟨𝐾, 𝐹⟩)    &   (𝜑𝑉 = ⟨𝑅, 𝑀⟩)       (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
 
Theoremfucof21 49340 The morphism part of the functor composition bifunctor maps a hom-set of the product category into a set of natural transformations. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &   𝐽 = (Hom ‘𝑇)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))    &   (𝜑𝑈𝑊)    &   (𝜑𝑉𝑊)       (𝜑 → (𝑈𝑃𝑉):(𝑈𝐽𝑉)⟶((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
 
Theoremfucoid 49341 Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid2 49342. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &    1 = (Id‘𝑇)    &   𝑄 = (𝐶 FuncCat 𝐸)    &   𝐼 = (Id‘𝑄)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)       (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))
 
Theoremfucoid2 49342 Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid 49341. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &    1 = (Id‘𝑇)    &   𝑄 = (𝐶 FuncCat 𝐸)    &   𝐼 = (Id‘𝑄)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))    &   (𝜑𝑈𝑊)       (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))
 
Theoremfuco22a 49343* The morphism part of the functor composition bifunctor. See also fuco22 49332. (Contributed by Zhi Wang, 1-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨𝐾, 𝐹⟩)    &   (𝜑𝑉 = ⟨𝑅, 𝑀⟩)    &   (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))    &   (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))       (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘((1st𝑀)‘𝑥))(⟨((1st𝐾)‘((1st𝐹)‘𝑥)), ((1st𝐾)‘((1st𝑀)‘𝑥))⟩(comp‘𝐸)((1st𝑅)‘((1st𝑀)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝐾)((1st𝑀)‘𝑥))‘(𝐴𝑥)))))
 
Theoremfuco23alem 49344 The naturality property (nati 17927) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))    &   (𝜑𝑋 ∈ (Base‘𝐶))    &    · = (comp‘𝐸)       (𝜑 → ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩ · (𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩ · (𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))
 
Theoremfuco23a 49345 The morphism part of the functor composition bifunctor. An alternate definition of F. See also fuco23 49334. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)    &   (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))       (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋)) (𝐵‘(𝐹𝑋))))
 
Theoremfucocolem1 49346 Lemma for fucoco 49350. Associativity for morphisms in category 𝐸. To simply put, ((𝑎 · 𝑏) · (𝑐 · 𝑑)) = (𝑎 · ((𝑏 · 𝑐) · 𝑑)) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025.)
(𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))    &   (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))    &   (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))    &   (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑃 ∈ (𝐷 Func 𝐸))    &   (𝜑𝑄 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))    &   (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))       (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
 
Theoremfucocolem2 49347* Lemma for fucoco 49350. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.)
(𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))    &   (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))    &   (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))    &   (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑋 = ⟨𝐹, 𝐺⟩)    &   (𝜑𝑌 = ⟨𝐾, 𝐿⟩)    &   (𝜑𝑍 = ⟨𝑀, 𝑁⟩)    &   (𝜑𝐴 = ⟨𝑅, 𝑆⟩)    &   (𝜑𝐵 = ⟨𝑈, 𝑉⟩)    &   𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &    · = (comp‘𝑇)    &    = (comp‘𝐷)       (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))))
 
Theoremfucocolem3 49348* Lemma for fucoco 49350. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))    &   (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))    &   (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))    &   (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑋 = ⟨𝐹, 𝐺⟩)    &   (𝜑𝑌 = ⟨𝐾, 𝐿⟩)    &   (𝜑𝑍 = ⟨𝑀, 𝑁⟩)    &   (𝜑𝐴 = ⟨𝑅, 𝑆⟩)    &   (𝜑𝐵 = ⟨𝑈, 𝑉⟩)    &   𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &    · = (comp‘𝑇)    &    = (comp‘𝐷)       (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(((𝑅‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐿)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
 
Theoremfucocolem4 49349* Lemma for fucoco 49350. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.)
(𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))    &   (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))    &   (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))    &   (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑋 = ⟨𝐹, 𝐺⟩)    &   (𝜑𝑌 = ⟨𝐾, 𝐿⟩)    &   (𝜑𝑍 = ⟨𝑀, 𝑁⟩)    &   (𝜑𝐴 = ⟨𝑅, 𝑆⟩)    &   (𝜑𝐵 = ⟨𝑈, 𝑉⟩)    &   𝑄 = (𝐶 FuncCat 𝐸)    &    = (comp‘𝑄)       (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
 
Theoremfucoco 49350 Composition in the source category is mapped to composition in the target. See also fucoco2 49351. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))    &   (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))    &   (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))    &   (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑋 = ⟨𝐹, 𝐺⟩)    &   (𝜑𝑌 = ⟨𝐾, 𝐿⟩)    &   (𝜑𝑍 = ⟨𝑀, 𝑁⟩)    &   (𝜑𝐴 = ⟨𝑅, 𝑆⟩)    &   (𝜑𝐵 = ⟨𝑈, 𝑉⟩)    &   𝑄 = (𝐶 FuncCat 𝐸)    &    = (comp‘𝑄)    &   𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &    · = (comp‘𝑇)       (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))
 
Theoremfucoco2 49351 Composition in the source category is mapped to composition in the target. See also fucoco 49350. (Contributed by Zhi Wang, 3-Oct-2025.)
𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &   𝑄 = (𝐶 FuncCat 𝐸)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &    · = (comp‘𝑇)    &    = (comp‘𝑄)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))    &   (𝜑𝑋𝑊)    &   (𝜑𝑌𝑊)    &   (𝜑𝑍𝑊)    &   𝐽 = (Hom ‘𝑇)    &   (𝜑𝐴 ∈ (𝑋𝐽𝑌))    &   (𝜑𝐵 ∈ (𝑌𝐽𝑍))       (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))
 
Theoremfucofunc 49352 The functor composition bifunctor is a functor. See also fucofunca 49353.

However, it is unlikely the unique functor compatible with the functor composition. As a counterexample, let 𝐶 and 𝐷 be terminal categories (categories of one object and one morphism, df-termc 49466), for example, (SetCat‘1o) (the trivial category, setc1oterm 49484), and 𝐸 be a category with two objects equipped with only two non-identity morphisms 𝑓 and 𝑔, pointing in the same direction. It is possible to map the ordered pair of natural transformations 𝑎, 𝑖, where 𝑎 sends to 𝑓 and 𝑖 is the identity natural transformation, to the other natural transformation 𝑏 sending to 𝑔, i.e., define the morphism part 𝑃 such that (𝑎(𝑈𝑃𝑉)𝑖) = 𝑏 such that (𝑏𝑋) = 𝑔 given hypotheses of fuco23 49334. Such construction should be provable as a functor.

Given any 𝑃, it is a morphism part of a functor compatible with the object part, i.e., the functor composition, i.e., the restriction of func, iff both of the following hold.

1. It has the same form as df-fuco 49310 up to fuco23 49334, but ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) might be mapped to a different morphism in category 𝐸. See fucofulem2 49304 for some insights.

2. fuco22nat 49339, fucoid 49341, and fucoco 49350 are satisfied.

(Contributed by Zhi Wang, 3-Oct-2025.)

𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &   𝑄 = (𝐶 FuncCat 𝐸)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐸 ∈ Cat)       (𝜑𝑂(𝑇 Func 𝑄)𝑃)
 
Theoremfucofunca 49353 The functor composition bifunctor is a functor. See also fucofunc 49352. (Contributed by Zhi Wang, 10-Oct-2025.)
𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &   𝑄 = (𝐶 FuncCat 𝐸)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐸 ∈ Cat)       (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (𝑇 Func 𝑄))
 
Theoremfucolid 49354* Post-compose a natural transformation with an identity natural transformation. (Contributed by Zhi Wang, 11-Oct-2025.)
(𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑃)    &   𝐼 = (Id‘𝑄)    &   𝑄 = (𝐷 FuncCat 𝐸)    &   (𝜑𝐴 ∈ (𝐺(𝐶 Nat 𝐷)𝐻))    &   (𝜑𝐹 ∈ (𝐷 Func 𝐸))       (𝜑 → ((𝐼𝐹)(⟨𝐹, 𝐺𝑃𝐹, 𝐻⟩)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐻)‘𝑥))‘(𝐴𝑥))))
 
Theoremfucorid 49355* Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor, in maps-to notation. (Contributed by Zhi Wang, 11-Oct-2025.)
(𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑃)    &   𝐼 = (Id‘𝑄)    &   𝑄 = (𝐶 FuncCat 𝐷)    &   (𝜑𝐴 ∈ (𝐺(𝐷 Nat 𝐸)𝐻))    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))       (𝜑 → (𝐴(⟨𝐺, 𝐹𝑃𝐻, 𝐹⟩)(𝐼𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝐴‘((1st𝐹)‘𝑥))))
 
Theoremfucorid2 49356 Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor. (Contributed by Zhi Wang, 11-Oct-2025.)
(𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑃)    &   𝐼 = (Id‘𝑄)    &   𝑄 = (𝐶 FuncCat 𝐷)    &   (𝜑𝐴 ∈ (𝐺(𝐷 Nat 𝐸)𝐻))    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))       (𝜑 → (𝐴(⟨𝐺, 𝐹𝑃𝐻, 𝐹⟩)(𝐼𝐹)) = (𝐴 ∘ (1st𝐹)))
 
21.49.15.19  Post-composition functors
 
Theorempostcofval 49357* Value of the post-composition functor as a curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.)
𝑄 = (𝐶 FuncCat 𝐷)    &   𝑅 = (𝐷 FuncCat 𝐸)    &    = (⟨𝑅, 𝑄⟩ curryF (⟨𝐶, 𝐷⟩ ∘F 𝐸))    &   (𝜑𝐹 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐶 ∈ Cat)    &   𝐾 = ((1st )‘𝐹)       (𝜑𝐾 = ⟨(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹func 𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st𝑔)‘𝑥)(2nd𝐹)((1st)‘𝑥))‘(𝑎𝑥)))))⟩)
 
Theorempostcofcl 49358 The post-composition functor as a curry of the functor composition bifunctor is a functor. (Contributed by Zhi Wang, 11-Oct-2025.)
𝑄 = (𝐶 FuncCat 𝐷)    &   𝑅 = (𝐷 FuncCat 𝐸)    &    = (⟨𝑅, 𝑄⟩ curryF (⟨𝐶, 𝐷⟩ ∘F 𝐸))    &   (𝜑𝐹 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐶 ∈ Cat)    &   𝐾 = ((1st )‘𝐹)    &   𝑆 = (𝐶 FuncCat 𝐸)       (𝜑𝐾 ∈ (𝑄 Func 𝑆))
 
21.49.15.20  Pre-composition functors
 
Theoremprecofvallem 49359 Lemma for precofval 49360 to enable catlid 17651 or catrid 17652. (Contributed by Zhi Wang, 11-Oct-2025.)
𝐴 = (Base‘𝐶)    &   𝐵 = (Base‘𝐸)    &    1 = (Id‘𝐷)    &   𝐼 = (Id‘𝐸)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑋𝐴)       (𝜑 → ((((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹𝑋))) ∧ (𝐾‘(𝐹𝑋)) ∈ 𝐵))
 
Theoremprecofval 49360* Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.)
𝑄 = (𝐶 FuncCat 𝐷)    &   𝑅 = (𝐷 FuncCat 𝐸)    &   (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄 swapF 𝑅))))    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐸 ∈ Cat)    &   (𝜑𝐾 = ((1st )‘𝐹))       (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))⟩)
 
TheoremprecofvalALT 49361* Alternate proof of precofval 49360. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑄 = (𝐶 FuncCat 𝐷)    &   𝑅 = (𝐷 FuncCat 𝐸)    &   (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄 swapF 𝑅))))    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐸 ∈ Cat)    &   (𝜑𝐾 = ((1st )‘𝐹))       (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))⟩)
 
Theoremprecofval2 49362* Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.)
𝑄 = (𝐶 FuncCat 𝐷)    &   𝑅 = (𝐷 FuncCat 𝐸)    &   (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄 swapF 𝑅))))    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐸 ∈ Cat)    &   (𝜑𝐾 = ((1st )‘𝐹))       (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎 ∘ (1st𝐹))))⟩)
 
Theoremprecofcl 49363 The pre-composition functor as a transposed curry of the functor composition bifunctor is a functor. (Contributed by Zhi Wang, 11-Oct-2025.)
𝑄 = (𝐶 FuncCat 𝐷)    &   𝑅 = (𝐷 FuncCat 𝐸)    &   (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄 swapF 𝑅))))    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐸 ∈ Cat)    &   (𝜑𝐾 = ((1st )‘𝐹))    &   𝑆 = (𝐶 FuncCat 𝐸)       (𝜑𝐾 ∈ (𝑅 Func 𝑆))
 
Theoremprecofval3 49364* Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 20-Oct-2025.)
𝑅 = (𝐷 FuncCat 𝐸)    &   𝐵 = (𝐷 Func 𝐸)    &   𝑁 = (𝐷 Nat 𝐸)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐸 ∈ Cat)    &   (𝜑𝐾 = (𝑔𝐵 ↦ (𝑔func𝐹, 𝐺⟩)))    &   (𝜑𝐿 = (𝑔𝐵, 𝐵 ↦ (𝑎 ∈ (𝑔𝑁) ↦ (𝑎𝐹))))    &   𝑄 = (𝐶 FuncCat 𝐷)    &   (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄 swapF 𝑅))))    &   (𝜑𝑀 = ((1st )‘⟨𝐹, 𝐺⟩))       (𝜑 → ⟨𝐾, 𝐿⟩ = 𝑀)
 
Theoremprecoffunc 49365* The pre-composition functor, expressed explicitly, is a functor. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof shortened by Zhi Wang, 20-Oct-2025.)
𝑅 = (𝐷 FuncCat 𝐸)    &   𝐵 = (𝐷 Func 𝐸)    &   𝑁 = (𝐷 Nat 𝐸)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐸 ∈ Cat)    &   (𝜑𝐾 = (𝑔𝐵 ↦ (𝑔func𝐹, 𝐺⟩)))    &   (𝜑𝐿 = (𝑔𝐵, 𝐵 ↦ (𝑎 ∈ (𝑔𝑁) ↦ (𝑎𝐹))))    &   𝑆 = (𝐶 FuncCat 𝐸)       (𝜑𝐾(𝑅 Func 𝑆)𝐿)
 
Syntaxcprcof 49366 Extend class notation with pre-composition functors.
class −∘F
 
Definitiondf-prcof 49367* Definition of pre-composition functors. The object part of the pre-composition functor given by 𝐹 pre-composes a functor with 𝐹; the morphism part pre-composes a natural transformation with the object part of 𝐹, in terms of function composition. Comments before the definition in § 3 of Chapter X in p. 236 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 3 Nov 2025). The notation −∘F is inspired by this page: https://1lab.dev/Cat.Functor.Compose.html.

The pre-composition functor can also be defined as a transposed curry of the functor composition bifunctor (precofval3 49364). But such definition requires an explicit third category. prcoftposcurfuco 49376 and prcoftposcurfucoa 49377 prove the equivalence. (Contributed by Zhi Wang, 2-Nov-2025.)

−∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ (1st𝑝) / 𝑑(2nd𝑝) / 𝑒(𝑑 Func 𝑒) / 𝑏⟨(𝑘𝑏 ↦ (𝑘func 𝑓)), (𝑘𝑏, 𝑙𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st𝑓))))⟩)
 
Theoremreldmprcof 49368 The domain of −∘F is a relation. (Contributed by Zhi Wang, 2-Nov-2025.)
Rel dom −∘F
 
Theoremprcofvalg 49369* Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
𝐵 = (𝐷 Func 𝐸)    &   𝑁 = (𝐷 Nat 𝐸)    &   (𝜑𝐹𝑈)    &   (𝜑𝑃𝑉)    &   (𝜑 → (1st𝑃) = 𝐷)    &   (𝜑 → (2nd𝑃) = 𝐸)       (𝜑 → (𝑃 −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
 
Theoremprcofvala 49370* Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
𝐵 = (𝐷 Func 𝐸)    &   𝑁 = (𝐷 Nat 𝐸)    &   (𝜑𝐷𝑉)    &   (𝜑𝐸𝑊)    &   (𝜑𝐹𝑈)       (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
 
Theoremprcofval 49371* Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
𝐵 = (𝐷 Func 𝐸)    &   𝑁 = (𝐷 Nat 𝐸)    &   (𝜑𝐷𝑉)    &   (𝜑𝐸𝑊)    &   Rel 𝑅    &   (𝜑𝐹𝑅𝐺)       (𝜑 → (⟨𝐷, 𝐸⟩ −∘F𝐹, 𝐺⟩) = ⟨(𝑘𝐵 ↦ (𝑘func𝐹, 𝐺⟩)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎𝐹)))⟩)
 
Theoremprcofpropd 49372 If the categories have the same set of objects, morphisms, and compositions, then they have the same pre-composition functors. (Contributed by Zhi Wang, 21-Nov-2025.)
(𝜑 → (Homf𝐴) = (Homf𝐵))    &   (𝜑 → (compf𝐴) = (compf𝐵))    &   (𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)    &   (𝜑𝐹𝑊)       (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = (⟨𝐵, 𝐷⟩ −∘F 𝐹))
 
Theoremprcofelvv 49373 The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025.)
(𝜑𝐹𝑈)    &   (𝜑𝑃𝑉)       (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V))
 
Theoremreldmprcof1 49374 The domain of the object part of the pre-composition functor is a relation. (Contributed by Zhi Wang, 2-Nov-2025.)
Rel dom (1st ‘(𝑃 −∘F 𝐹))
 
Theoremreldmprcof2 49375 The domain of the morphism part of the pre-composition functor is a relation. (Contributed by Zhi Wang, 2-Nov-2025.)
Rel dom (2nd ‘(𝑃 −∘F 𝐹))
 
Theoremprcoftposcurfuco 49376 The pre-composition functor is the transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 2-Nov-2025.)
𝑅 = (𝐷 FuncCat 𝐸)    &   (𝜑𝐸 ∈ Cat)    &   𝑄 = (𝐶 FuncCat 𝐷)    &   (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄 swapF 𝑅))))    &   (𝜑𝑀 = ((1st )‘⟨𝐹, 𝐺⟩))    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)       (𝜑 → (⟨𝐷, 𝐸⟩ −∘F𝐹, 𝐺⟩) = 𝑀)
 
Theoremprcoftposcurfucoa 49377 The pre-composition functor is the transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 2-Nov-2025.)
𝑅 = (𝐷 FuncCat 𝐸)    &   (𝜑𝐸 ∈ Cat)    &   𝑄 = (𝐶 FuncCat 𝐷)    &   (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄 swapF 𝑅))))    &   (𝜑𝑀 = ((1st )‘𝐹))    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))       (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = 𝑀)
 
Theoremprcoffunc 49378 The pre-composition functor is a functor. (Contributed by Zhi Wang, 2-Nov-2025.)
𝑅 = (𝐷 FuncCat 𝐸)    &   (𝜑𝐸 ∈ Cat)    &   𝑆 = (𝐶 FuncCat 𝐸)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)       (𝜑 → (⟨𝐷, 𝐸⟩ −∘F𝐹, 𝐺⟩) ∈ (𝑅 Func 𝑆))
 
Theoremprcoffunca 49379 The pre-composition functor is a functor. (Contributed by Zhi Wang, 2-Nov-2025.)
𝑅 = (𝐷 FuncCat 𝐸)    &   (𝜑𝐸 ∈ Cat)    &   𝑆 = (𝐶 FuncCat 𝐸)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))       (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) ∈ (𝑅 Func 𝑆))
 
Theoremprcoffunca2 49380 The pre-composition functor is a functor. (Contributed by Zhi Wang, 4-Nov-2025.)
𝑅 = (𝐷 FuncCat 𝐸)    &   (𝜑𝐸 ∈ Cat)    &   𝑆 = (𝐶 FuncCat 𝐸)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨𝐾, 𝐿⟩)       (𝜑𝐾(𝑅 Func 𝑆)𝐿)
 
Theoremprcof1 49381 The object part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
(𝜑𝐾 ∈ (𝐷 Func 𝐸))    &   (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑂)       (𝜑 → (𝑂𝐾) = (𝐾func 𝐹))
 
Theoremprcof2a 49382* The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
𝑁 = (𝐷 Nat 𝐸)    &   (𝜑𝐾 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐿 ∈ (𝐷 Func 𝐸))    &   (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)    &   (𝜑𝐹𝑈)       (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))))
 
Theoremprcof2 49383* The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
𝑁 = (𝐷 Nat 𝐸)    &   (𝜑𝐾 ∈ (𝐷 Func 𝐸))    &   (𝜑𝐿 ∈ (𝐷 Func 𝐸))    &   (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F𝐹, 𝐺⟩)) = 𝑃)    &   Rel 𝑅    &   (𝜑𝐹𝑅𝐺)       (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎𝐹)))
 
Theoremprcof21a 49384 The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
𝑁 = (𝐷 Nat 𝐸)    &   (𝜑𝐴 ∈ (𝐾𝑁𝐿))    &   (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)    &   (𝜑𝐹𝑈)       (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st𝐹)))
 
Theoremprcof22a 49385 The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
𝑁 = (𝐷 Nat 𝐸)    &   (𝜑𝐴 ∈ (𝐾𝑁𝐿))    &   (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))       (𝜑 → (((𝐾𝑃𝐿)‘𝐴)‘𝑋) = (𝐴‘((1st𝐹)‘𝑋)))
 
Theoremprcofdiag1 49386 A constant functor pre-composed by a functor is another constant functor. (Contributed by Zhi Wang, 25-Nov-2025.)
𝐿 = (𝐶Δfunc𝐷)    &   𝑀 = (𝐶Δfunc𝐸)    &   (𝜑𝐹 ∈ (𝐸 Func 𝐷))    &   (𝜑𝐶 ∈ Cat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)       (𝜑 → (((1st𝐿)‘𝑋) ∘func 𝐹) = ((1st𝑀)‘𝑋))
 
Theoremprcofdiag 49387 A diagonal functor post-composed by a pre-composition functor is another diagonal functor. (Contributed by Zhi Wang, 25-Nov-2025.)
𝐿 = (𝐶Δfunc𝐷)    &   𝑀 = (𝐶Δfunc𝐸)    &   (𝜑𝐹 ∈ (𝐸 Func 𝐷))    &   (𝜑𝐶 ∈ Cat)    &   (𝜑 → (⟨𝐷, 𝐶⟩ −∘F 𝐹) = 𝐺)       (𝜑 → (𝐺func 𝐿) = 𝑀)
 
21.49.16  Examples of categories
 
21.49.16.1  The category of categories
 
Theoremcatcrcl 49388 Reverse closure for the category of categories (in a universe) (Contributed by Zhi Wang, 14-Nov-2025.)
𝐶 = (CatCat‘𝑈)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑𝑈 ∈ V)
 
Theoremcatcrcl2 49389 Reverse closure for the category of categories (in a universe) (Contributed by Zhi Wang, 14-Nov-2025.)
𝐶 = (CatCat‘𝑈)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   𝐵 = (Base‘𝐶)       (𝜑 → (𝑋𝐵𝑌𝐵))
 
Theoremelcatchom 49390 A morphism of the category of categories (in a universe) is a functor. See df-catc 18068 for the definition of the category Cat, which consists of all categories in the universe 𝑢 (i.e., "𝑢-small categories", see Definition 3.44. of [Adamek] p. 39), with functors as the morphisms (catchom 18072). (Contributed by Zhi Wang, 14-Nov-2025.)
𝐶 = (CatCat‘𝑈)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑𝐹 ∈ (𝑋 Func 𝑌))
 
Theoremcatcsect 49391 The property "𝐹 is a section of 𝐺 " in a category of small categories (in a universe). (Contributed by Zhi Wang, 14-Nov-2025.)
𝐶 = (CatCat‘𝑈)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (idfunc𝑋)    &   𝑆 = (Sect‘𝐶)       (𝐹(𝑋𝑆𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺func 𝐹) = 𝐼))
 
Theoremcatcinv 49392 The property "𝐹 is an inverse of 𝐺 " in a category of small categories (in a universe). (Contributed by Zhi Wang, 14-Nov-2025.)
𝐶 = (CatCat‘𝑈)    &   𝑁 = (Inv‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (idfunc𝑋)    &   𝐽 = (idfunc𝑌)       (𝐹(𝑋𝑁𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ ((𝐺func 𝐹) = 𝐼 ∧ (𝐹func 𝐺) = 𝐽)))
 
Theoremcatcisoi 49393 A functor is an isomorphism of categories only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in [Adamek] p. 34. (Contributed by Zhi Wang, 17-Nov-2025.)
𝐶 = (CatCat‘𝑈)    &   𝑅 = (Base‘𝑋)    &   𝑆 = (Base‘𝑌)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐼𝑌))       (𝜑 → (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆))
 
Theoremuobeq2 49394 If a full functor (in fact, a full embedding) is a section, then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.)
𝐵 = (Base‘𝐷)    &   (𝜑𝑋𝐵)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑 → (𝐾func 𝐹) = 𝐺)    &   (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)    &   𝑄 = (CatCat‘𝑈)    &   𝑆 = (Sect‘𝑄)    &   (𝜑𝐾 ∈ (𝐷 Full 𝐸))    &   (𝜑𝐾 ∈ dom (𝐷𝑆𝐸))       (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))
 
Theoremuobeq3 49395 An isomorphism between categories generates equal sets of universal objects. (Contributed by Zhi Wang, 17-Nov-2025.)
𝐵 = (Base‘𝐷)    &   (𝜑𝑋𝐵)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑 → (𝐾func 𝐹) = 𝐺)    &   (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)    &   𝑄 = (CatCat‘𝑈)    &   𝐼 = (Iso‘𝑄)    &   (𝜑𝐾 ∈ (𝐷𝐼𝐸))       (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))
 
Theoremopf11 49396 The object part of the op functor on functor categories. Lemma for fucoppc 49403. (Contributed by Zhi Wang, 18-Nov-2025.)
(𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))    &   (𝜑𝑋 ∈ (𝐶 Func 𝐷))       (𝜑 → (1st ‘(𝐹𝑋)) = (1st𝑋))
 
Theoremopf12 49397 The object part of the op functor on functor categories. Lemma for oppfdiag 49409. (Contributed by Zhi Wang, 19-Nov-2025.)
(𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))    &   (𝜑𝑋 ∈ (𝐶 Func 𝐷))       (𝜑 → (𝑀(2nd ‘(𝐹𝑋))𝑁) = (𝑁(2nd𝑋)𝑀))
 
Theoremopf2fval 49398* The morphism part of the op functor on functor categories. Lemma for fucoppc 49403. (Contributed by Zhi Wang, 18-Nov-2025.)
(𝜑𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ( I ↾ (𝑦𝑁𝑥))))    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐹𝑌) = ( I ↾ (𝑌𝑁𝑋)))
 
Theoremopf2 49399* The morphism part of the op functor on functor categories. Lemma for fucoppc 49403. (Contributed by Zhi Wang, 18-Nov-2025.)
(𝜑𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ( I ↾ (𝑦𝑁𝑥))))    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐵)    &   (𝜑𝐶 = 𝐷)    &   (𝜑𝐷 ∈ (𝑌𝑁𝑋))       (𝜑 → ((𝑋𝐹𝑌)‘𝐶) = 𝐷)
 
Theoremfucoppclem 49400 Lemma for fucoppc 49403. (Contributed by Zhi Wang, 18-Nov-2025.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   𝑁 = (𝐶 Nat 𝐷)    &   (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))    &   (𝜑𝑋 ∈ (𝐶 Func 𝐷))    &   (𝜑𝑌 ∈ (𝐶 Func 𝐷))       (𝜑 → (𝑌𝑁𝑋) = ((𝐹𝑋)(𝑂 Nat 𝑃)(𝐹𝑌)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49798
  Copyright terms: Public domain < Previous  Next >