| Metamath
Proof Explorer Theorem List (p. 494 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30897) |
(30898-32420) |
(32421-49787) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fucofval 49301* | Value of the function giving the functor composition bifunctor. Hypotheses fucofval.c and fucofval.d are not redundant (fucofvalne 49307). (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → ⚬ = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) | ||
| Theorem | fucoelvv 49302 | A functor composition bifunctor is an ordered pair. Enables 1st2ndb 7987. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) ⇒ ⊢ (𝜑 → ⚬ ∈ (V × V)) | ||
| Theorem | fuco1 49303 | The object part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → 𝑂 = ( ∘func ↾ 𝑊)) | ||
| Theorem | fucof1 49304 | The object part of the functor composition bifunctor maps ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → 𝑂:𝑊⟶(𝐶 Func 𝐸)) | ||
| Theorem | fuco2 49305* | The morphism part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → 𝑃 = (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))) | ||
| Theorem | fucofn2 49306 | The morphism part of the functor composition bifunctor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → 𝑃 Fn (𝑊 × 𝑊)) | ||
| Theorem | fucofvalne 49307* | Value of the function giving the functor composition bifunctor, if 𝐶 or 𝐷 are not sets. (Contributed by Zhi Wang, 7-Oct-2025.) |
| ⊢ (𝜑 → ¬ (𝐶 ∈ V ∧ 𝐷 ∈ V)) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → ⚬ ≠ 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) | ||
| Theorem | fuco11 49308 | The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) ⇒ ⊢ (𝜑 → (𝑂‘𝑈) = (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) | ||
| Theorem | fuco11cl 49309 | The object part of the functor composition bifunctor maps into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) ⇒ ⊢ (𝜑 → (𝑂‘𝑈) ∈ (𝐶 Func 𝐸)) | ||
| Theorem | fuco11a 49310* | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝑂‘𝑈) = 〈(𝐾 ∘ 𝐹), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) | ||
| Theorem | fuco112 49311* | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (2nd ‘(𝑂‘𝑈)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))) | ||
| Theorem | fuco111 49312 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. (Contributed by Zhi Wang, 2-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) ⇒ ⊢ (𝜑 → (1st ‘(𝑂‘𝑈)) = (𝐾 ∘ 𝐹)) | ||
| Theorem | fuco111x 49313 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. An object is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → ((1st ‘(𝑂‘𝑈))‘𝑋) = (𝐾‘(𝐹‘𝑋))) | ||
| Theorem | fuco112x 49314 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋(2nd ‘(𝑂‘𝑈))𝑌) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))) | ||
| Theorem | fuco112xa 49315 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌)) ⇒ ⊢ (𝜑 → ((𝑋(2nd ‘(𝑂‘𝑈))𝑌)‘𝐴) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐴))) | ||
| Theorem | fuco11id 49316 | The identity morphism of the mapped object. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 1 = (Id‘𝐸) ⇒ ⊢ (𝜑 → (𝐼‘(𝑂‘𝑈)) = ( 1 ∘ (𝐾 ∘ 𝐹))) | ||
| Theorem | fuco11idx 49317 | The identity morphism of the mapped object. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 1 = (Id‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → ((𝐼‘(𝑂‘𝑈))‘𝑋) = ( 1 ‘(𝐾‘(𝐹‘𝑋)))) | ||
| Theorem | fuco21 49318* | The morphism part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) & ⊢ (𝜑 → 𝑅(𝐷 Func 𝐸)𝑆) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) ⇒ ⊢ (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) | ||
| Theorem | fuco11b 49319 | The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) | ||
| Theorem | fuco11bALT 49320 | Alternate proof of fuco11b 49319. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑂) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → (𝐺𝑂𝐹) = (𝐺 ∘func 𝐹)) | ||
| Theorem | fuco22 49321* | The morphism part of the functor composition bifunctor. See also fuco22a 49332. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) | ||
| Theorem | fucofn22 49322 | The morphism part of the functor composition bifunctor maps two natural transformations to a function on a base set. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) Fn (Base‘𝐶)) | ||
| Theorem | fuco23 49323 | The morphism part of the functor composition bifunctor. See also fuco23a 49334. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) ⇒ ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) | ||
| Theorem | fuco22natlem1 49324 | Lemma for fuco22nat 49328. The commutative square of natural transformation 𝐴 in category 𝐷, mapped to category 𝐸 by the morphism part 𝐿 of the functor. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) ⇒ ⊢ (𝜑 → ((((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) | ||
| Theorem | fuco22natlem2 49325 | Lemma for fuco22nat 49328. The commutative square of natural transformation 𝐵 in category 𝐸, combined with the commutative square of fuco22natlem1 49324. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) ⇒ ⊢ (𝜑 → (((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑌)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌)))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))))) | ||
| Theorem | fuco22natlem3 49326 | Combine fuco22natlem2 49325 with fuco23 49323. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) ⇒ ⊢ (𝜑 → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌)(〈((𝐾 ∘ 𝐹)‘𝑋), ((𝐾 ∘ 𝐹)‘𝑌)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌))((((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻)) = (((((𝑀‘𝑋)𝑆(𝑀‘𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻)(〈((𝐾 ∘ 𝐹)‘𝑋), ((𝑅 ∘ 𝑀)‘𝑋)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋))) | ||
| Theorem | fuco22natlem 49327 | The composed natural transformation is a natural transformation. Use fuco22nat 49328 instead. (New usage is discouraged.) (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉))) | ||
| Theorem | fuco22nat 49328 | The composed natural transformation is a natural transformation. (Contributed by Zhi Wang, 2-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀)) & ⊢ (𝜑 → 𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅)) & ⊢ (𝜑 → 𝑈 = 〈𝐾, 𝐹〉) & ⊢ (𝜑 → 𝑉 = 〈𝑅, 𝑀〉) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉))) | ||
| Theorem | fucof21 49329 | The morphism part of the functor composition bifunctor maps a hom-set of the product category into a set of natural transformations. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 𝐽 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑈𝑃𝑉):(𝑈𝐽𝑉)⟶((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉))) | ||
| Theorem | fucoid 49330 | Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid2 49331. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 1 = (Id‘𝑇) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) ⇒ ⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝐼‘(𝑂‘𝑈))) | ||
| Theorem | fucoid2 49331 | Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid 49330. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 1 = (Id‘𝑇) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝐼‘(𝑂‘𝑈))) | ||
| Theorem | fuco22a 49332* | The morphism part of the functor composition bifunctor. See also fuco22 49321. (Contributed by Zhi Wang, 1-Oct-2025.) |
| ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈𝐾, 𝐹〉) & ⊢ (𝜑 → 𝑉 = 〈𝑅, 𝑀〉) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀)) & ⊢ (𝜑 → 𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅)) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘((1st ‘𝑀)‘𝑥))(〈((1st ‘𝐾)‘((1st ‘𝐹)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑀)‘𝑥))〉(comp‘𝐸)((1st ‘𝑅)‘((1st ‘𝑀)‘𝑥)))((((1st ‘𝐹)‘𝑥)(2nd ‘𝐾)((1st ‘𝑀)‘𝑥))‘(𝐴‘𝑥))))) | ||
| Theorem | fuco23alem 49333 | The naturality property (nati 17900) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ · = (comp‘𝐸) ⇒ ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(𝐵‘(𝐹‘𝑋)))) | ||
| Theorem | fuco23a 49334 | The morphism part of the functor composition bifunctor. An alternate definition of ∘F. See also fuco23 49323. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) ⇒ ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋)) ∗ (𝐵‘(𝐹‘𝑋)))) | ||
| Theorem | fucocolem1 49335 | Lemma for fucoco 49339. Associativity for morphisms in category 𝐸. To simply put, ((𝑎 · 𝑏) · (𝑐 · 𝑑)) = (𝑎 · ((𝑏 · 𝑐) · 𝑑)) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑃 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝑄 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐴 ∈ (((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋))(Hom ‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋)))) & ⊢ (𝜑 → 𝐵 ∈ (((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋))(Hom ‘𝐸)((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋)))) ⇒ ⊢ (𝜑 → (((𝑈‘((1st ‘𝑁)‘𝑋))(〈((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑋)))𝐴)(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑋)))(𝐵(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋))〉(comp‘𝐸)((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋)))((((1st ‘𝐺)‘𝑋)(2nd ‘𝐹)((1st ‘𝐿)‘𝑋))‘(𝑆‘𝑋)))) = ((𝑈‘((1st ‘𝑁)‘𝑋))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑋)))((𝐴(〈((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋)), ((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋)))𝐵)(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋)))((((1st ‘𝐺)‘𝑋)(2nd ‘𝐹)((1st ‘𝐿)‘𝑋))‘(𝑆‘𝑋))))) | ||
| Theorem | fucocolem2 49336* | Lemma for fucoco 49339. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ · = (comp‘𝑇) & ⊢ ∗ = (comp‘𝐷) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝑁)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))(𝑅‘((1st ‘𝑁)‘𝑥)))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐺)‘𝑥)(2nd ‘𝐹)((1st ‘𝑁)‘𝑥))‘((𝑉‘𝑥)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐿)‘𝑥)〉 ∗ ((1st ‘𝑁)‘𝑥))(𝑆‘𝑥)))))) | ||
| Theorem | fucocolem3 49337* | Lemma for fucoco 49339. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ · = (comp‘𝑇) & ⊢ ∗ = (comp‘𝐷) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))(((𝑅‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝐿)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐿)‘𝑥)(2nd ‘𝐹)((1st ‘𝑁)‘𝑥))‘(𝑉‘𝑥)))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑥))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐺)‘𝑥)(2nd ‘𝐹)((1st ‘𝐿)‘𝑥))‘(𝑆‘𝑥)))))) | ||
| Theorem | fucocolem4 49338* | Lemma for fucoco 49339. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ ∙ = (comp‘𝑄) ⇒ ⊢ (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐾)‘((1st ‘𝐿)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐿)‘𝑥)(2nd ‘𝐾)((1st ‘𝑁)‘𝑥))‘(𝑉‘𝑥)))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝐿)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))((𝑅‘((1st ‘𝐿)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑥))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝐿)‘𝑥)))((((1st ‘𝐺)‘𝑥)(2nd ‘𝐹)((1st ‘𝐿)‘𝑥))‘(𝑆‘𝑥)))))) | ||
| Theorem | fucoco 49339 | Composition in the source category is mapped to composition in the target. See also fucoco2 49340. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ ∙ = (comp‘𝑄) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ · = (comp‘𝑇) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) | ||
| Theorem | fucoco2 49340 | Composition in the source category is mapped to composition in the target. See also fucoco 49339. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ · = (comp‘𝑇) & ⊢ ∙ = (comp‘𝑄) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ 𝐽 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐽𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐽𝑍)) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) | ||
| Theorem | fucofunc 49341 |
The functor composition bifunctor is a functor. See also fucofunca 49342.
However, it is unlikely the unique functor compatible with the functor composition. As a counterexample, let 𝐶 and 𝐷 be terminal categories (categories of one object and one morphism, df-termc 49455), for example, (SetCat‘1o) (the trivial category, setc1oterm 49473), and 𝐸 be a category with two objects equipped with only two non-identity morphisms 𝑓 and 𝑔, pointing in the same direction. It is possible to map the ordered pair of natural transformations 〈𝑎, 𝑖〉, where 𝑎 sends to 𝑓 and 𝑖 is the identity natural transformation, to the other natural transformation 𝑏 sending to 𝑔, i.e., define the morphism part 𝑃 such that (𝑎(𝑈𝑃𝑉)𝑖) = 𝑏 such that (𝑏‘𝑋) = 𝑔 given hypotheses of fuco23 49323. Such construction should be provable as a functor. Given any 𝑃, it is a morphism part of a functor compatible with the object part, i.e., the functor composition, i.e., the restriction of ∘func, iff both of the following hold. 1. It has the same form as df-fuco 49299 up to fuco23 49323, but ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) might be mapped to a different morphism in category 𝐸. See fucofulem2 49293 for some insights. 2. fuco22nat 49328, fucoid 49330, and fucoco 49339 are satisfied. (Contributed by Zhi Wang, 3-Oct-2025.) |
| ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑂(𝑇 Func 𝑄)𝑃) | ||
| Theorem | fucofunca 49342 | The functor composition bifunctor is a functor. See also fucofunc 49341. (Contributed by Zhi Wang, 10-Oct-2025.) |
| ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) ⇒ ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (𝑇 Func 𝑄)) | ||
| Theorem | fucolid 49343* | Post-compose a natural transformation with an identity natural transformation. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ (𝜑 → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑃) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 𝑄 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → 𝐴 ∈ (𝐺(𝐶 Nat 𝐷)𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) ⇒ ⊢ (𝜑 → ((𝐼‘𝐹)(〈𝐹, 𝐺〉𝑃〈𝐹, 𝐻〉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐺)‘𝑥)(2nd ‘𝐹)((1st ‘𝐻)‘𝑥))‘(𝐴‘𝑥)))) | ||
| Theorem | fucorid 49344* | Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor, in maps-to notation. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ (𝜑 → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑃) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐴 ∈ (𝐺(𝐷 Nat 𝐸)𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (𝐴(〈𝐺, 𝐹〉𝑃〈𝐻, 𝐹〉)(𝐼‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝐴‘((1st ‘𝐹)‘𝑥)))) | ||
| Theorem | fucorid2 49345 | Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ (𝜑 → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = 𝑃) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐴 ∈ (𝐺(𝐷 Nat 𝐸)𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (𝐴(〈𝐺, 𝐹〉𝑃〈𝐻, 𝐹〉)(𝐼‘𝐹)) = (𝐴 ∘ (1st ‘𝐹))) | ||
| Theorem | postcofval 49346* | Value of the post-composition functor as a curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ ⚬ = (〈𝑅, 𝑄〉 curryF (〈𝐶, 𝐷〉 ∘F 𝐸)) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐾 = ((1st ‘ ⚬ )‘𝐹) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹 ∘func 𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))))〉) | ||
| Theorem | postcofcl 49347 | The post-composition functor as a curry of the functor composition bifunctor is a functor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ ⚬ = (〈𝑅, 𝑄〉 curryF (〈𝐶, 𝐷〉 ∘F 𝐸)) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐾 = ((1st ‘ ⚬ )‘𝐹) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝑄 Func 𝑆)) | ||
| Theorem | precofvallem 49348 | Lemma for precofval 49349 to enable catlid 17624 or catrid 17625. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝐴 = (Base‘𝐶) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 1 = (Id‘𝐷) & ⊢ 𝐼 = (Id‘𝐸) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹‘𝑋))) ∧ (𝐾‘(𝐹‘𝑋)) ∈ 𝐵)) | ||
| Theorem | precofval 49349* | Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) | ||
| Theorem | precofvalALT 49350* | Alternate proof of precofval 49349. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) | ||
| Theorem | precofval2 49351* | Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) | ||
| Theorem | precofcl 49352 | The pre-composition functor as a transposed curry of the functor composition bifunctor is a functor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬ )‘𝐹)) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝑅 Func 𝑆)) | ||
| Theorem | precofval3 49353* | Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ 𝐵 = (𝐷 Func 𝐸) & ⊢ 𝑁 = (𝐷 Nat 𝐸) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) & ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) & ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘〈𝐹, 𝐺〉)) ⇒ ⊢ (𝜑 → 〈𝐾, 𝐿〉 = 𝑀) | ||
| Theorem | precoffunc 49354* | The pre-composition functor, expressed explicitly, is a functor. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof shortened by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ 𝐵 = (𝐷 Func 𝐸) & ⊢ 𝑁 = (𝐷 Nat 𝐸) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → 𝐾 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘func 〈𝐹, 𝐺〉))) & ⊢ (𝜑 → 𝐿 = (𝑔 ∈ 𝐵, ℎ ∈ 𝐵 ↦ (𝑎 ∈ (𝑔𝑁ℎ) ↦ (𝑎 ∘ 𝐹)))) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) ⇒ ⊢ (𝜑 → 𝐾(𝑅 Func 𝑆)𝐿) | ||
| Syntax | cprcof 49355 | Extend class notation with pre-composition functors. |
| class −∘F | ||
| Definition | df-prcof 49356* |
Definition of pre-composition functors. The object part of the
pre-composition functor given by 𝐹 pre-composes a functor with
𝐹; the morphism part pre-composes a natural transformation with the
object part of 𝐹, in terms of function composition. Comments
before the definition in
§
3 of Chapter X in p. 236 of
Mac Lane, Saunders, Categories for the Working Mathematician, 2nd
Edition, Springer Science+Business Media, New York, (1998)
[QA169.M33 1998]; available at
https://math.mit.edu/~hrm/palestine/maclane-categories.pdf
(retrieved
3 Nov 2025). The notation −∘F is inspired by this page:
https://1lab.dev/Cat.Functor.Compose.html.
The pre-composition functor can also be defined as a transposed curry of the functor composition bifunctor (precofval3 49353). But such definition requires an explicit third category. prcoftposcurfuco 49365 and prcoftposcurfucoa 49366 prove the equivalence. (Contributed by Zhi Wang, 2-Nov-2025.) |
| ⊢ −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑑⦌⦋(2nd ‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉) | ||
| Theorem | reldmprcof 49357 | The domain of −∘F is a relation. (Contributed by Zhi Wang, 2-Nov-2025.) |
| ⊢ Rel dom −∘F | ||
| Theorem | prcofvalg 49358* | Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.) |
| ⊢ 𝐵 = (𝐷 Func 𝐸) & ⊢ 𝑁 = (𝐷 Nat 𝐸) & ⊢ (𝜑 → 𝐹 ∈ 𝑈) & ⊢ (𝜑 → 𝑃 ∈ 𝑉) & ⊢ (𝜑 → (1st ‘𝑃) = 𝐷) & ⊢ (𝜑 → (2nd ‘𝑃) = 𝐸) ⇒ ⊢ (𝜑 → (𝑃 −∘F 𝐹) = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) | ||
| Theorem | prcofvala 49359* | Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.) |
| ⊢ 𝐵 = (𝐷 Func 𝐸) & ⊢ 𝑁 = (𝐷 Nat 𝐸) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑈) ⇒ ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) | ||
| Theorem | prcofval 49360* | Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.) |
| ⊢ 𝐵 = (𝐷 Func 𝐸) & ⊢ 𝑁 = (𝐷 Nat 𝐸) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ Rel 𝑅 & ⊢ (𝜑 → 𝐹𝑅𝐺) ⇒ ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉) = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 〈𝐹, 𝐺〉)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹)))〉) | ||
| Theorem | prcofpropd 49361 | If the categories have the same set of objects, morphisms, and compositions, then they have the same pre-composition functors. (Contributed by Zhi Wang, 21-Nov-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) & ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐶〉 −∘F 𝐹) = (〈𝐵, 𝐷〉 −∘F 𝐹)) | ||
| Theorem | prcofelvv 49362 | The pre-composition functor is an ordered pair. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑈) & ⊢ (𝜑 → 𝑃 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑃 −∘F 𝐹) ∈ (V × V)) | ||
| Theorem | reldmprcof1 49363 | The domain of the object part of the pre-composition functor is a relation. (Contributed by Zhi Wang, 2-Nov-2025.) |
| ⊢ Rel dom (1st ‘(𝑃 −∘F 𝐹)) | ||
| Theorem | reldmprcof2 49364 | The domain of the morphism part of the pre-composition functor is a relation. (Contributed by Zhi Wang, 2-Nov-2025.) |
| ⊢ Rel dom (2nd ‘(𝑃 −∘F 𝐹)) | ||
| Theorem | prcoftposcurfuco 49365 | The pre-composition functor is the transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 2-Nov-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) & ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘〈𝐹, 𝐺〉)) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉) = 𝑀) | ||
| Theorem | prcoftposcurfucoa 49366 | The pre-composition functor is the transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 2-Nov-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF ((〈𝐶, 𝐷〉 ∘F 𝐸) ∘func (𝑄 swapF 𝑅)))) & ⊢ (𝜑 → 𝑀 = ((1st ‘ ⚬ )‘𝐹)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝑀) | ||
| Theorem | prcoffunc 49367 | The pre-composition functor is a functor. (Contributed by Zhi Wang, 2-Nov-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉) ∈ (𝑅 Func 𝑆)) | ||
| Theorem | prcoffunca 49368 | The pre-composition functor is a functor. (Contributed by Zhi Wang, 2-Nov-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) ∈ (𝑅 Func 𝑆)) | ||
| Theorem | prcoffunca2 49369 | The pre-composition functor is a functor. (Contributed by Zhi Wang, 4-Nov-2025.) |
| ⊢ 𝑅 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ 𝑆 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐾, 𝐿〉) ⇒ ⊢ (𝜑 → 𝐾(𝑅 Func 𝑆)𝐿) | ||
| Theorem | prcof1 49370 | The object part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → (1st ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑂) ⇒ ⊢ (𝜑 → (𝑂‘𝐾) = (𝐾 ∘func 𝐹)) | ||
| Theorem | prcof2a 49371* | The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ 𝑁 = (𝐷 Nat 𝐸) & ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐿 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st ‘𝐹)))) | ||
| Theorem | prcof2 49372* | The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ 𝑁 = (𝐷 Nat 𝐸) & ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝐿 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉)) = 𝑃) & ⊢ Rel 𝑅 & ⊢ (𝜑 → 𝐹𝑅𝐺) ⇒ ⊢ (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ 𝐹))) | ||
| Theorem | prcof21a 49373 | The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ 𝑁 = (𝐷 Nat 𝐸) & ⊢ (𝜑 → 𝐴 ∈ (𝐾𝑁𝐿)) & ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st ‘𝐹))) | ||
| Theorem | prcof22a 49374 | The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.) |
| ⊢ 𝑁 = (𝐷 Nat 𝐸) & ⊢ (𝜑 → 𝐴 ∈ (𝐾𝑁𝐿)) & ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (((𝐾𝑃𝐿)‘𝐴)‘𝑋) = (𝐴‘((1st ‘𝐹)‘𝑋))) | ||
| Theorem | prcofdiag1 49375 | A constant functor pre-composed by a functor is another constant functor. (Contributed by Zhi Wang, 25-Nov-2025.) |
| ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ 𝑀 = (𝐶Δfunc𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (((1st ‘𝐿)‘𝑋) ∘func 𝐹) = ((1st ‘𝑀)‘𝑋)) | ||
| Theorem | prcofdiag 49376 | A diagonal functor post-composed by a pre-composition functor is another diagonal functor. (Contributed by Zhi Wang, 25-Nov-2025.) |
| ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ 𝑀 = (𝐶Δfunc𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐸 Func 𝐷)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → (〈𝐷, 𝐶〉 −∘F 𝐹) = 𝐺) ⇒ ⊢ (𝜑 → (𝐺 ∘func 𝐿) = 𝑀) | ||
| Theorem | catcrcl 49377 | Reverse closure for the category of categories (in a universe) (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → 𝑈 ∈ V) | ||
| Theorem | catcrcl2 49378 | Reverse closure for the category of categories (in a universe) (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | elcatchom 49379 | A morphism of the category of categories (in a universe) is a functor. See df-catc 18041 for the definition of the category Cat, which consists of all categories in the universe 𝑢 (i.e., "𝑢-small categories", see Definition 3.44. of [Adamek] p. 39), with functors as the morphisms (catchom 18045). (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑋 Func 𝑌)) | ||
| Theorem | catcsect 49380 | The property "𝐹 is a section of 𝐺 " in a category of small categories (in a universe). (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (idfunc‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝐹(𝑋𝑆𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺 ∘func 𝐹) = 𝐼)) | ||
| Theorem | catcinv 49381 | The property "𝐹 is an inverse of 𝐺 " in a category of small categories (in a universe). (Contributed by Zhi Wang, 14-Nov-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝑁 = (Inv‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (idfunc‘𝑋) & ⊢ 𝐽 = (idfunc‘𝑌) ⇒ ⊢ (𝐹(𝑋𝑁𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ ((𝐺 ∘func 𝐹) = 𝐼 ∧ (𝐹 ∘func 𝐺) = 𝐽))) | ||
| Theorem | catcisoi 49382 | A functor is an isomorphism of categories only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in [Adamek] p. 34. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘𝐹):𝑅–1-1-onto→𝑆)) | ||
| Theorem | uobeq2 49383 | If a full functor (in fact, a full embedding) is a section, then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) & ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) & ⊢ 𝑄 = (CatCat‘𝑈) & ⊢ 𝑆 = (Sect‘𝑄) & ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) & ⊢ (𝜑 → 𝐾 ∈ dom (𝐷𝑆𝐸)) ⇒ ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) | ||
| Theorem | uobeq3 49384 | An isomorphism between categories generates equal sets of universal objects. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) & ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) & ⊢ 𝑄 = (CatCat‘𝑈) & ⊢ 𝐼 = (Iso‘𝑄) & ⊢ (𝜑 → 𝐾 ∈ (𝐷𝐼𝐸)) ⇒ ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) | ||
| Theorem | opf11 49385 | The object part of the op functor on functor categories. Lemma for fucoppc 49392. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (1st ‘(𝐹‘𝑋)) = (1st ‘𝑋)) | ||
| Theorem | opf12 49386 | The object part of the op functor on functor categories. Lemma for oppfdiag 49398. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (𝑀(2nd ‘(𝐹‘𝑋))𝑁) = (𝑁(2nd ‘𝑋)𝑀)) | ||
| Theorem | opf2fval 49387* | The morphism part of the op functor on functor categories. Lemma for fucoppc 49392. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) = ( I ↾ (𝑌𝑁𝑋))) | ||
| Theorem | opf2 49388* | The morphism part of the op functor on functor categories. Lemma for fucoppc 49392. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐷 ∈ (𝑌𝑁𝑋)) ⇒ ⊢ (𝜑 → ((𝑋𝐹𝑌)‘𝐶) = 𝐷) | ||
| Theorem | fucoppclem 49389 | Lemma for fucoppc 49392. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (𝑌𝑁𝑋) = ((𝐹‘𝑋)(𝑂 Nat 𝑃)(𝐹‘𝑌))) | ||
| Theorem | fucoppcid 49390* | The opposite category of functors is compatible with the category of opposite functors in terms of identity morphism. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (oppCat‘𝑄) & ⊢ 𝑆 = (𝑂 FuncCat 𝑃) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) | ||
| Theorem | fucoppcco 49391* | The opposite category of functors is compatible with the category of opposite functors in terms of composition. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (oppCat‘𝑄) & ⊢ 𝑆 = (𝑂 FuncCat 𝑃) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ (𝑋(Hom ‘𝑅)𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑌(Hom ‘𝑅)𝑍)) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐴)) = (((𝑌𝐺𝑍)‘𝐵)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐴))) | ||
| Theorem | fucoppc 49392* | The isomorphism from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (oppCat‘𝑄) & ⊢ 𝑆 = (𝑂 FuncCat 𝑃) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ 𝑇 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐼 = (Iso‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐹(𝑅𝐼𝑆)𝐺) | ||
| Theorem | fucoppcffth 49393* | A fully faithful functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (oppCat‘𝑄) & ⊢ 𝑆 = (𝑂 FuncCat 𝑃) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺) | ||
| Theorem | fucoppcfunc 49394* | A functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (oppCat‘𝑄) & ⊢ 𝑆 = (𝑂 FuncCat 𝑃) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
| Theorem | fucoppccic 49395 | The opposite category of functors is isomorphic to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑋 = (oppCat‘(𝐷 FuncCat 𝐸)) & ⊢ 𝑌 = ((oppCat‘𝐷) FuncCat (oppCat‘𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) | ||
| Theorem | oppfdiag1 49396 | A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘((1st ‘𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋)) | ||
| Theorem | oppfdiag1a 49397 | A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( oppFunc ‘((1st ‘𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋)) | ||
| Theorem | oppfdiag 49398* | A diagonal functor for opposite categories is the opposite functor of the diagonal functor for original categories post-composed by an isomorphism (fucoppc 49392). (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶))) & ⊢ 𝑁 = (𝐷 Nat 𝐶) & ⊢ (𝜑 → 𝐺 = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛𝑁𝑚)))) ⇒ ⊢ (𝜑 → (〈𝐹, 𝐺〉 ∘func ( oppFunc ‘𝐿)) = (𝑂Δfunc𝑃)) | ||
| Syntax | cthinc 49399 | Extend class notation with the class of thin categories. |
| class ThinCat | ||
| Definition | df-thinc 49400* | Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of [Adamek] p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦)} | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |