Detailed syntax breakdown of Definition df-pridl
Step | Hyp | Ref
| Expression |
1 | | cpridl 36210 |
. 2
class
PrIdl |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | crngo 36096 |
. . 3
class
RingOps |
4 | | vi |
. . . . . . 7
setvar 𝑖 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑖 |
6 | 2 | cv 1538 |
. . . . . . . 8
class 𝑟 |
7 | | c1st 7861 |
. . . . . . . 8
class
1st |
8 | 6, 7 | cfv 6458 |
. . . . . . 7
class
(1st ‘𝑟) |
9 | 8 | crn 5601 |
. . . . . 6
class ran
(1st ‘𝑟) |
10 | 5, 9 | wne 2941 |
. . . . 5
wff 𝑖 ≠ ran (1st
‘𝑟) |
11 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
12 | 11 | cv 1538 |
. . . . . . . . . . . 12
class 𝑥 |
13 | | vy |
. . . . . . . . . . . . 13
setvar 𝑦 |
14 | 13 | cv 1538 |
. . . . . . . . . . . 12
class 𝑦 |
15 | | c2nd 7862 |
. . . . . . . . . . . . 13
class
2nd |
16 | 6, 15 | cfv 6458 |
. . . . . . . . . . . 12
class
(2nd ‘𝑟) |
17 | 12, 14, 16 | co 7307 |
. . . . . . . . . . 11
class (𝑥(2nd ‘𝑟)𝑦) |
18 | 17, 5 | wcel 2104 |
. . . . . . . . . 10
wff (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 |
19 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
20 | 19 | cv 1538 |
. . . . . . . . . 10
class 𝑏 |
21 | 18, 13, 20 | wral 3062 |
. . . . . . . . 9
wff
∀𝑦 ∈
𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 |
22 | | va |
. . . . . . . . . 10
setvar 𝑎 |
23 | 22 | cv 1538 |
. . . . . . . . 9
class 𝑎 |
24 | 21, 11, 23 | wral 3062 |
. . . . . . . 8
wff
∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 |
25 | 23, 5 | wss 3892 |
. . . . . . . . 9
wff 𝑎 ⊆ 𝑖 |
26 | 20, 5 | wss 3892 |
. . . . . . . . 9
wff 𝑏 ⊆ 𝑖 |
27 | 25, 26 | wo 845 |
. . . . . . . 8
wff (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖) |
28 | 24, 27 | wi 4 |
. . . . . . 7
wff
(∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) |
29 | | cidl 36209 |
. . . . . . . 8
class
Idl |
30 | 6, 29 | cfv 6458 |
. . . . . . 7
class
(Idl‘𝑟) |
31 | 28, 19, 30 | wral 3062 |
. . . . . 6
wff
∀𝑏 ∈
(Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) |
32 | 31, 22, 30 | wral 3062 |
. . . . 5
wff
∀𝑎 ∈
(Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) |
33 | 10, 32 | wa 397 |
. . . 4
wff (𝑖 ≠ ran (1st
‘𝑟) ∧
∀𝑎 ∈
(Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖))) |
34 | 33, 4, 30 | crab 3284 |
. . 3
class {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))} |
35 | 2, 3, 34 | cmpt 5164 |
. 2
class (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |
36 | 1, 35 | wceq 1539 |
1
wff PrIdl =
(𝑟 ∈ RingOps ↦
{𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |