Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispridl2 Structured version   Visualization version   GIF version

Theorem ispridl2 37540
Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 37572 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ispridl2.1 𝐺 = (1st β€˜π‘…)
ispridl2.2 𝐻 = (2nd β€˜π‘…)
ispridl2.3 𝑋 = ran 𝐺
Assertion
Ref Expression
ispridl2 ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) β†’ 𝑃 ∈ (PrIdlβ€˜π‘…))
Distinct variable groups:   𝑅,π‘Ž,𝑏   𝑃,π‘Ž,𝑏   𝑋,π‘Ž,𝑏
Allowed substitution hints:   𝐺(π‘Ž,𝑏)   𝐻(π‘Ž,𝑏)

Proof of Theorem ispridl2
Dummy variables π‘Ÿ 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispridl2.1 . . . . . . . . . . . . . 14 𝐺 = (1st β€˜π‘…)
2 ispridl2.3 . . . . . . . . . . . . . 14 𝑋 = ran 𝐺
31, 2idlss 37518 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ π‘Ÿ ∈ (Idlβ€˜π‘…)) β†’ π‘Ÿ βŠ† 𝑋)
4 ssralv 4040 . . . . . . . . . . . . 13 (π‘Ÿ βŠ† 𝑋 β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
53, 4syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ π‘Ÿ ∈ (Idlβ€˜π‘…)) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
65adantrr 715 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (π‘Ÿ ∈ (Idlβ€˜π‘…) ∧ 𝑠 ∈ (Idlβ€˜π‘…))) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
71, 2idlss 37518 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑠 ∈ (Idlβ€˜π‘…)) β†’ 𝑠 βŠ† 𝑋)
8 ssralv 4040 . . . . . . . . . . . . . 14 (𝑠 βŠ† 𝑋 β†’ (βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
98ralimdv 3159 . . . . . . . . . . . . 13 (𝑠 βŠ† 𝑋 β†’ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
107, 9syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑠 ∈ (Idlβ€˜π‘…)) β†’ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
1110adantrl 714 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (π‘Ÿ ∈ (Idlβ€˜π‘…) ∧ 𝑠 ∈ (Idlβ€˜π‘…))) β†’ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
126, 11syld 47 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (π‘Ÿ ∈ (Idlβ€˜π‘…) ∧ 𝑠 ∈ (Idlβ€˜π‘…))) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
1312adantlr 713 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idlβ€˜π‘…)) ∧ (π‘Ÿ ∈ (Idlβ€˜π‘…) ∧ 𝑠 ∈ (Idlβ€˜π‘…))) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
14 r19.26-2 3128 . . . . . . . . . . 11 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 ∧ ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ↔ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 ∧ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
15 pm3.35 801 . . . . . . . . . . . . 13 (((π‘Žπ»π‘) ∈ 𝑃 ∧ ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))
16152ralimi 3113 . . . . . . . . . . . 12 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 ∧ ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))
17 2ralor 3219 . . . . . . . . . . . . 13 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (βˆ€π‘Ž ∈ π‘Ÿ π‘Ž ∈ 𝑃 ∨ βˆ€π‘ ∈ 𝑠 𝑏 ∈ 𝑃))
18 dfss3 3960 . . . . . . . . . . . . . 14 (π‘Ÿ βŠ† 𝑃 ↔ βˆ€π‘Ž ∈ π‘Ÿ π‘Ž ∈ 𝑃)
19 dfss3 3960 . . . . . . . . . . . . . 14 (𝑠 βŠ† 𝑃 ↔ βˆ€π‘ ∈ 𝑠 𝑏 ∈ 𝑃)
2018, 19orbi12i 912 . . . . . . . . . . . . 13 ((π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃) ↔ (βˆ€π‘Ž ∈ π‘Ÿ π‘Ž ∈ 𝑃 ∨ βˆ€π‘ ∈ 𝑠 𝑏 ∈ 𝑃))
2117, 20sylbb2 237 . . . . . . . . . . . 12 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))
2216, 21syl 17 . . . . . . . . . . 11 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 ∧ ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))
2314, 22sylbir 234 . . . . . . . . . 10 ((βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 ∧ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))
2423expcom 412 . . . . . . . . 9 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))
2513, 24syl6 35 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idlβ€˜π‘…)) ∧ (π‘Ÿ ∈ (Idlβ€˜π‘…) ∧ 𝑠 ∈ (Idlβ€˜π‘…))) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))))
2625ralrimdvva 3200 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idlβ€˜π‘…)) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))))
2726ex 411 . . . . . 6 (𝑅 ∈ RingOps β†’ (𝑃 ∈ (Idlβ€˜π‘…) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))))
2827adantrd 490 . . . . 5 (𝑅 ∈ RingOps β†’ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))))
2928imdistand 569 . . . 4 (𝑅 ∈ RingOps β†’ (((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋) ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋) ∧ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))))
30 df-3an 1086 . . . 4 ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ↔ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋) ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
31 df-3an 1086 . . . 4 ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))) ↔ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋) ∧ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))))
3229, 30, 313imtr4g 295 . . 3 (𝑅 ∈ RingOps β†’ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ (𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))))
33 ispridl2.2 . . . 4 𝐻 = (2nd β€˜π‘…)
341, 33, 2ispridl 37536 . . 3 (𝑅 ∈ RingOps β†’ (𝑃 ∈ (PrIdlβ€˜π‘…) ↔ (𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))))
3532, 34sylibrd 258 . 2 (𝑅 ∈ RingOps β†’ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ 𝑃 ∈ (PrIdlβ€˜π‘…)))
3635imp 405 1 ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) β†’ 𝑃 ∈ (PrIdlβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∨ wo 845   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051   βŠ† wss 3939  ran crn 5671  β€˜cfv 6541  (class class class)co 7414  1st c1st 7987  2nd c2nd 7988  RingOpscrngo 37396  Idlcidl 37509  PrIdlcpridl 37510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-iota 6493  df-fun 6543  df-fv 6549  df-ov 7417  df-idl 37512  df-pridl 37513
This theorem is referenced by:  ispridlc  37572
  Copyright terms: Public domain W3C validator