Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispridl2 Structured version   Visualization version   GIF version

Theorem ispridl2 36894
Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 36926 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ispridl2.1 𝐺 = (1st β€˜π‘…)
ispridl2.2 𝐻 = (2nd β€˜π‘…)
ispridl2.3 𝑋 = ran 𝐺
Assertion
Ref Expression
ispridl2 ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) β†’ 𝑃 ∈ (PrIdlβ€˜π‘…))
Distinct variable groups:   𝑅,π‘Ž,𝑏   𝑃,π‘Ž,𝑏   𝑋,π‘Ž,𝑏
Allowed substitution hints:   𝐺(π‘Ž,𝑏)   𝐻(π‘Ž,𝑏)

Proof of Theorem ispridl2
Dummy variables π‘Ÿ 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispridl2.1 . . . . . . . . . . . . . 14 𝐺 = (1st β€˜π‘…)
2 ispridl2.3 . . . . . . . . . . . . . 14 𝑋 = ran 𝐺
31, 2idlss 36872 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ π‘Ÿ ∈ (Idlβ€˜π‘…)) β†’ π‘Ÿ βŠ† 𝑋)
4 ssralv 4049 . . . . . . . . . . . . 13 (π‘Ÿ βŠ† 𝑋 β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
53, 4syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ π‘Ÿ ∈ (Idlβ€˜π‘…)) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
65adantrr 715 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (π‘Ÿ ∈ (Idlβ€˜π‘…) ∧ 𝑠 ∈ (Idlβ€˜π‘…))) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
71, 2idlss 36872 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑠 ∈ (Idlβ€˜π‘…)) β†’ 𝑠 βŠ† 𝑋)
8 ssralv 4049 . . . . . . . . . . . . . 14 (𝑠 βŠ† 𝑋 β†’ (βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
98ralimdv 3169 . . . . . . . . . . . . 13 (𝑠 βŠ† 𝑋 β†’ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
107, 9syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑠 ∈ (Idlβ€˜π‘…)) β†’ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
1110adantrl 714 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ (π‘Ÿ ∈ (Idlβ€˜π‘…) ∧ 𝑠 ∈ (Idlβ€˜π‘…))) β†’ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
126, 11syld 47 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (π‘Ÿ ∈ (Idlβ€˜π‘…) ∧ 𝑠 ∈ (Idlβ€˜π‘…))) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
1312adantlr 713 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idlβ€˜π‘…)) ∧ (π‘Ÿ ∈ (Idlβ€˜π‘…) ∧ 𝑠 ∈ (Idlβ€˜π‘…))) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
14 r19.26-2 3138 . . . . . . . . . . 11 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 ∧ ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ↔ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 ∧ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
15 pm3.35 801 . . . . . . . . . . . . 13 (((π‘Žπ»π‘) ∈ 𝑃 ∧ ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))
16152ralimi 3123 . . . . . . . . . . . 12 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 ∧ ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))
17 2ralor 3228 . . . . . . . . . . . . 13 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (βˆ€π‘Ž ∈ π‘Ÿ π‘Ž ∈ 𝑃 ∨ βˆ€π‘ ∈ 𝑠 𝑏 ∈ 𝑃))
18 dfss3 3969 . . . . . . . . . . . . . 14 (π‘Ÿ βŠ† 𝑃 ↔ βˆ€π‘Ž ∈ π‘Ÿ π‘Ž ∈ 𝑃)
19 dfss3 3969 . . . . . . . . . . . . . 14 (𝑠 βŠ† 𝑃 ↔ βˆ€π‘ ∈ 𝑠 𝑏 ∈ 𝑃)
2018, 19orbi12i 913 . . . . . . . . . . . . 13 ((π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃) ↔ (βˆ€π‘Ž ∈ π‘Ÿ π‘Ž ∈ 𝑃 ∨ βˆ€π‘ ∈ 𝑠 𝑏 ∈ 𝑃))
2117, 20sylbb2 237 . . . . . . . . . . . 12 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))
2216, 21syl 17 . . . . . . . . . . 11 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 ∧ ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))
2314, 22sylbir 234 . . . . . . . . . 10 ((βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 ∧ βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))
2423expcom 414 . . . . . . . . 9 (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))
2513, 24syl6 35 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idlβ€˜π‘…)) ∧ (π‘Ÿ ∈ (Idlβ€˜π‘…) ∧ 𝑠 ∈ (Idlβ€˜π‘…))) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ (βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))))
2625ralrimdvva 3209 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idlβ€˜π‘…)) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))))
2726ex 413 . . . . . 6 (𝑅 ∈ RingOps β†’ (𝑃 ∈ (Idlβ€˜π‘…) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))))
2827adantrd 492 . . . . 5 (𝑅 ∈ RingOps β†’ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))))
2928imdistand 571 . . . 4 (𝑅 ∈ RingOps β†’ (((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋) ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋) ∧ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))))
30 df-3an 1089 . . . 4 ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ↔ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋) ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
31 df-3an 1089 . . . 4 ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))) ↔ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋) ∧ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃))))
3229, 30, 313imtr4g 295 . . 3 (𝑅 ∈ RingOps β†’ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ (𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))))
33 ispridl2.2 . . . 4 𝐻 = (2nd β€˜π‘…)
341, 33, 2ispridl 36890 . . 3 (𝑅 ∈ RingOps β†’ (𝑃 ∈ (PrIdlβ€˜π‘…) ↔ (𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ÿ ∈ (Idlβ€˜π‘…)βˆ€π‘  ∈ (Idlβ€˜π‘…)(βˆ€π‘Ž ∈ π‘Ÿ βˆ€π‘ ∈ 𝑠 (π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ÿ βŠ† 𝑃 ∨ 𝑠 βŠ† 𝑃)))))
3532, 34sylibrd 258 . 2 (𝑅 ∈ RingOps β†’ ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) β†’ 𝑃 ∈ (PrIdlβ€˜π‘…)))
3635imp 407 1 ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) β†’ 𝑃 ∈ (PrIdlβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   βŠ† wss 3947  ran crn 5676  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  RingOpscrngo 36750  Idlcidl 36863  PrIdlcpridl 36864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-idl 36866  df-pridl 36867
This theorem is referenced by:  ispridlc  36926
  Copyright terms: Public domain W3C validator