Step | Hyp | Ref
| Expression |
1 | | ispridl2.1 |
. . . . . . . . . . . . . 14
⊢ 𝐺 = (1st ‘𝑅) |
2 | | ispridl2.3 |
. . . . . . . . . . . . . 14
⊢ 𝑋 = ran 𝐺 |
3 | 1, 2 | idlss 36101 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ RingOps ∧ 𝑟 ∈ (Idl‘𝑅)) → 𝑟 ⊆ 𝑋) |
4 | | ssralv 3983 |
. . . . . . . . . . . . 13
⊢ (𝑟 ⊆ 𝑋 → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
5 | 3, 4 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ RingOps ∧ 𝑟 ∈ (Idl‘𝑅)) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
6 | 5 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ RingOps ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
7 | 1, 2 | idlss 36101 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ RingOps ∧ 𝑠 ∈ (Idl‘𝑅)) → 𝑠 ⊆ 𝑋) |
8 | | ssralv 3983 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ⊆ 𝑋 → (∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
9 | 8 | ralimdv 3103 |
. . . . . . . . . . . . 13
⊢ (𝑠 ⊆ 𝑋 → (∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
10 | 7, 9 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ RingOps ∧ 𝑠 ∈ (Idl‘𝑅)) → (∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
11 | 10 | adantrl 712 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ RingOps ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
12 | 6, 11 | syld 47 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ RingOps ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
13 | 12 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
14 | | r19.26-2 3095 |
. . . . . . . . . . 11
⊢
(∀𝑎 ∈
𝑟 ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ↔ (∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 ∧ ∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
15 | | pm3.35 799 |
. . . . . . . . . . . . 13
⊢ (((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) |
16 | 15 | 2ralimi 3087 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
𝑟 ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) → ∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) |
17 | | 2ralor 3294 |
. . . . . . . . . . . . 13
⊢
(∀𝑎 ∈
𝑟 ∀𝑏 ∈ 𝑠 (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (∀𝑎 ∈ 𝑟 𝑎 ∈ 𝑃 ∨ ∀𝑏 ∈ 𝑠 𝑏 ∈ 𝑃)) |
18 | | dfss3 3905 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ⊆ 𝑃 ↔ ∀𝑎 ∈ 𝑟 𝑎 ∈ 𝑃) |
19 | | dfss3 3905 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ⊆ 𝑃 ↔ ∀𝑏 ∈ 𝑠 𝑏 ∈ 𝑃) |
20 | 18, 19 | orbi12i 911 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃) ↔ (∀𝑎 ∈ 𝑟 𝑎 ∈ 𝑃 ∨ ∀𝑏 ∈ 𝑠 𝑏 ∈ 𝑃)) |
21 | 17, 20 | sylbb2 237 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
𝑟 ∀𝑏 ∈ 𝑠 (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) |
22 | 16, 21 | syl 17 |
. . . . . . . . . . 11
⊢
(∀𝑎 ∈
𝑟 ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 ∧ ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) |
23 | 14, 22 | sylbir 234 |
. . . . . . . . . 10
⊢
((∀𝑎 ∈
𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 ∧ ∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) |
24 | 23 | expcom 413 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
𝑟 ∀𝑏 ∈ 𝑠 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → (∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))) |
25 | 13, 24 | syl6 35 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑟 ∈ (Idl‘𝑅) ∧ 𝑠 ∈ (Idl‘𝑅))) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → (∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)))) |
26 | 25 | ralrimdvva 3117 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)))) |
27 | 26 | ex 412 |
. . . . . 6
⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (Idl‘𝑅) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))))) |
28 | 27 | adantrd 491 |
. . . . 5
⊢ (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))))) |
29 | 28 | imdistand 570 |
. . . 4
⊢ (𝑅 ∈ RingOps → (((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))))) |
30 | | df-3an 1087 |
. . . 4
⊢ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
31 | | df-3an 1087 |
. . . 4
⊢ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)))) |
32 | 29, 30, 31 | 3imtr4g 295 |
. . 3
⊢ (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))))) |
33 | | ispridl2.2 |
. . . 4
⊢ 𝐻 = (2nd ‘𝑅) |
34 | 1, 33, 2 | ispridl 36119 |
. . 3
⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑎 ∈ 𝑟 ∀𝑏 ∈ 𝑠 (𝑎𝐻𝑏) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))))) |
35 | 32, 34 | sylibrd 258 |
. 2
⊢ (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) → 𝑃 ∈ (PrIdl‘𝑅))) |
36 | 35 | imp 406 |
1
⊢ ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅)) |