Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . 3
⊢ (𝑟 = 𝑅 → (Idl‘𝑟) = (Idl‘𝑅)) |
2 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) |
3 | | pridlval.1 |
. . . . . . . 8
⊢ 𝐺 = (1st ‘𝑅) |
4 | 2, 3 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
5 | 4 | rneqd 5836 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = ran 𝐺) |
6 | | pridlval.3 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
7 | 5, 6 | eqtr4di 2797 |
. . . . 5
⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = 𝑋) |
8 | 7 | neeq2d 3003 |
. . . 4
⊢ (𝑟 = 𝑅 → (𝑖 ≠ ran (1st ‘𝑟) ↔ 𝑖 ≠ 𝑋)) |
9 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (2nd ‘𝑟) = (2nd ‘𝑅)) |
10 | | pridlval.2 |
. . . . . . . . . . 11
⊢ 𝐻 = (2nd ‘𝑅) |
11 | 9, 10 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (2nd ‘𝑟) = 𝐻) |
12 | 11 | oveqd 7272 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑥(2nd ‘𝑟)𝑦) = (𝑥𝐻𝑦)) |
13 | 12 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ((𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 ↔ (𝑥𝐻𝑦) ∈ 𝑖)) |
14 | 13 | 2ralbidv 3122 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 ↔ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖)) |
15 | 14 | imbi1d 341 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ((∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) ↔ (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))) |
16 | 1, 15 | raleqbidv 3327 |
. . . . 5
⊢ (𝑟 = 𝑅 → (∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) ↔ ∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))) |
17 | 1, 16 | raleqbidv 3327 |
. . . 4
⊢ (𝑟 = 𝑅 → (∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) ↔ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))) |
18 | 8, 17 | anbi12d 630 |
. . 3
⊢ (𝑟 = 𝑅 → ((𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖))) ↔ (𝑖 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖))))) |
19 | 1, 18 | rabeqbidv 3410 |
. 2
⊢ (𝑟 = 𝑅 → {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))} = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |
20 | | df-pridl 36096 |
. 2
⊢ PrIdl =
(𝑟 ∈ RingOps ↦
{𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |
21 | | fvex 6769 |
. . 3
⊢
(Idl‘𝑅) ∈
V |
22 | 21 | rabex 5251 |
. 2
⊢ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))} ∈ V |
23 | 19, 20, 22 | fvmpt 6857 |
1
⊢ (𝑅 ∈ RingOps →
(PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |