Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlval Structured version   Visualization version   GIF version

Theorem pridlval 37414
Description: The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
pridlval.1 𝐺 = (1st β€˜π‘…)
pridlval.2 𝐻 = (2nd β€˜π‘…)
pridlval.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlval (𝑅 ∈ RingOps β†’ (PrIdlβ€˜π‘…) = {𝑖 ∈ (Idlβ€˜π‘…) ∣ (𝑖 β‰  𝑋 ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘…)βˆ€π‘ ∈ (Idlβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯𝐻𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)))})
Distinct variable groups:   𝑅,𝑖,π‘₯,𝑦,π‘Ž,𝑏   𝑖,𝑋   𝑖,𝐻
Allowed substitution hints:   𝐺(π‘₯,𝑦,𝑖,π‘Ž,𝑏)   𝐻(π‘₯,𝑦,π‘Ž,𝑏)   𝑋(π‘₯,𝑦,π‘Ž,𝑏)

Proof of Theorem pridlval
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 fveq2 6885 . . 3 (π‘Ÿ = 𝑅 β†’ (Idlβ€˜π‘Ÿ) = (Idlβ€˜π‘…))
2 fveq2 6885 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (1st β€˜π‘Ÿ) = (1st β€˜π‘…))
3 pridlval.1 . . . . . . . 8 𝐺 = (1st β€˜π‘…)
42, 3eqtr4di 2784 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (1st β€˜π‘Ÿ) = 𝐺)
54rneqd 5931 . . . . . 6 (π‘Ÿ = 𝑅 β†’ ran (1st β€˜π‘Ÿ) = ran 𝐺)
6 pridlval.3 . . . . . 6 𝑋 = ran 𝐺
75, 6eqtr4di 2784 . . . . 5 (π‘Ÿ = 𝑅 β†’ ran (1st β€˜π‘Ÿ) = 𝑋)
87neeq2d 2995 . . . 4 (π‘Ÿ = 𝑅 β†’ (𝑖 β‰  ran (1st β€˜π‘Ÿ) ↔ 𝑖 β‰  𝑋))
9 fveq2 6885 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ (2nd β€˜π‘Ÿ) = (2nd β€˜π‘…))
10 pridlval.2 . . . . . . . . . . 11 𝐻 = (2nd β€˜π‘…)
119, 10eqtr4di 2784 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (2nd β€˜π‘Ÿ) = 𝐻)
1211oveqd 7422 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (π‘₯(2nd β€˜π‘Ÿ)𝑦) = (π‘₯𝐻𝑦))
1312eleq1d 2812 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ ((π‘₯(2nd β€˜π‘Ÿ)𝑦) ∈ 𝑖 ↔ (π‘₯𝐻𝑦) ∈ 𝑖))
14132ralbidv 3212 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘Ÿ)𝑦) ∈ 𝑖 ↔ βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯𝐻𝑦) ∈ 𝑖))
1514imbi1d 341 . . . . . 6 (π‘Ÿ = 𝑅 β†’ ((βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘Ÿ)𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)) ↔ (βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯𝐻𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖))))
161, 15raleqbidv 3336 . . . . 5 (π‘Ÿ = 𝑅 β†’ (βˆ€π‘ ∈ (Idlβ€˜π‘Ÿ)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘Ÿ)𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)) ↔ βˆ€π‘ ∈ (Idlβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯𝐻𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖))))
171, 16raleqbidv 3336 . . . 4 (π‘Ÿ = 𝑅 β†’ (βˆ€π‘Ž ∈ (Idlβ€˜π‘Ÿ)βˆ€π‘ ∈ (Idlβ€˜π‘Ÿ)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘Ÿ)𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)) ↔ βˆ€π‘Ž ∈ (Idlβ€˜π‘…)βˆ€π‘ ∈ (Idlβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯𝐻𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖))))
188, 17anbi12d 630 . . 3 (π‘Ÿ = 𝑅 β†’ ((𝑖 β‰  ran (1st β€˜π‘Ÿ) ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘Ÿ)βˆ€π‘ ∈ (Idlβ€˜π‘Ÿ)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘Ÿ)𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖))) ↔ (𝑖 β‰  𝑋 ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘…)βˆ€π‘ ∈ (Idlβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯𝐻𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)))))
191, 18rabeqbidv 3443 . 2 (π‘Ÿ = 𝑅 β†’ {𝑖 ∈ (Idlβ€˜π‘Ÿ) ∣ (𝑖 β‰  ran (1st β€˜π‘Ÿ) ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘Ÿ)βˆ€π‘ ∈ (Idlβ€˜π‘Ÿ)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘Ÿ)𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)))} = {𝑖 ∈ (Idlβ€˜π‘…) ∣ (𝑖 β‰  𝑋 ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘…)βˆ€π‘ ∈ (Idlβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯𝐻𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)))})
20 df-pridl 37392 . 2 PrIdl = (π‘Ÿ ∈ RingOps ↦ {𝑖 ∈ (Idlβ€˜π‘Ÿ) ∣ (𝑖 β‰  ran (1st β€˜π‘Ÿ) ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘Ÿ)βˆ€π‘ ∈ (Idlβ€˜π‘Ÿ)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘Ÿ)𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)))})
21 fvex 6898 . . 3 (Idlβ€˜π‘…) ∈ V
2221rabex 5325 . 2 {𝑖 ∈ (Idlβ€˜π‘…) ∣ (𝑖 β‰  𝑋 ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘…)βˆ€π‘ ∈ (Idlβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯𝐻𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)))} ∈ V
2319, 20, 22fvmpt 6992 1 (𝑅 ∈ RingOps β†’ (PrIdlβ€˜π‘…) = {𝑖 ∈ (Idlβ€˜π‘…) ∣ (𝑖 β‰  𝑋 ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘…)βˆ€π‘ ∈ (Idlβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯𝐻𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∨ wo 844   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  {crab 3426   βŠ† wss 3943  ran crn 5670  β€˜cfv 6537  (class class class)co 7405  1st c1st 7972  2nd c2nd 7973  RingOpscrngo 37275  Idlcidl 37388  PrIdlcpridl 37389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6489  df-fun 6539  df-fv 6545  df-ov 7408  df-pridl 37392
This theorem is referenced by:  ispridl  37415
  Copyright terms: Public domain W3C validator