Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlval Structured version   Visualization version   GIF version

Theorem pridlval 38083
Description: The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
pridlval.1 𝐺 = (1st𝑅)
pridlval.2 𝐻 = (2nd𝑅)
pridlval.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlval (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
Distinct variable groups:   𝑅,𝑖,𝑥,𝑦,𝑎,𝑏   𝑖,𝑋   𝑖,𝐻
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑖,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem pridlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6831 . . 3 (𝑟 = 𝑅 → (Idl‘𝑟) = (Idl‘𝑅))
2 fveq2 6831 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
3 pridlval.1 . . . . . . . 8 𝐺 = (1st𝑅)
42, 3eqtr4di 2786 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
54rneqd 5885 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
6 pridlval.3 . . . . . 6 𝑋 = ran 𝐺
75, 6eqtr4di 2786 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
87neeq2d 2990 . . . 4 (𝑟 = 𝑅 → (𝑖 ≠ ran (1st𝑟) ↔ 𝑖𝑋))
9 fveq2 6831 . . . . . . . . . . 11 (𝑟 = 𝑅 → (2nd𝑟) = (2nd𝑅))
10 pridlval.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
119, 10eqtr4di 2786 . . . . . . . . . 10 (𝑟 = 𝑅 → (2nd𝑟) = 𝐻)
1211oveqd 7372 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(2nd𝑟)𝑦) = (𝑥𝐻𝑦))
1312eleq1d 2818 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑥(2nd𝑟)𝑦) ∈ 𝑖 ↔ (𝑥𝐻𝑦) ∈ 𝑖))
14132ralbidv 3198 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 ↔ ∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖))
1514imbi1d 341 . . . . . 6 (𝑟 = 𝑅 → ((∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ (∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
161, 15raleqbidv 3314 . . . . 5 (𝑟 = 𝑅 → (∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
171, 16raleqbidv 3314 . . . 4 (𝑟 = 𝑅 → (∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
188, 17anbi12d 632 . . 3 (𝑟 = 𝑅 → ((𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))) ↔ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))))
191, 18rabeqbidv 3415 . 2 (𝑟 = 𝑅 → {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
20 df-pridl 38061 . 2 PrIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
21 fvex 6844 . . 3 (Idl‘𝑅) ∈ V
2221rabex 5281 . 2 {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} ∈ V
2319, 20, 22fvmpt 6938 1 (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2930  wral 3049  {crab 3397  wss 3899  ran crn 5622  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  RingOpscrngo 37944  Idlcidl 38057  PrIdlcpridl 38058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-pridl 38061
This theorem is referenced by:  ispridl  38084
  Copyright terms: Public domain W3C validator