Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlval Structured version   Visualization version   GIF version

Theorem pridlval 35744
 Description: The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
pridlval.1 𝐺 = (1st𝑅)
pridlval.2 𝐻 = (2nd𝑅)
pridlval.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlval (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
Distinct variable groups:   𝑅,𝑖,𝑥,𝑦,𝑎,𝑏   𝑖,𝑋   𝑖,𝐻
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑖,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem pridlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6659 . . 3 (𝑟 = 𝑅 → (Idl‘𝑟) = (Idl‘𝑅))
2 fveq2 6659 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
3 pridlval.1 . . . . . . . 8 𝐺 = (1st𝑅)
42, 3eqtr4di 2812 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
54rneqd 5780 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
6 pridlval.3 . . . . . 6 𝑋 = ran 𝐺
75, 6eqtr4di 2812 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
87neeq2d 3012 . . . 4 (𝑟 = 𝑅 → (𝑖 ≠ ran (1st𝑟) ↔ 𝑖𝑋))
9 fveq2 6659 . . . . . . . . . . 11 (𝑟 = 𝑅 → (2nd𝑟) = (2nd𝑅))
10 pridlval.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
119, 10eqtr4di 2812 . . . . . . . . . 10 (𝑟 = 𝑅 → (2nd𝑟) = 𝐻)
1211oveqd 7168 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(2nd𝑟)𝑦) = (𝑥𝐻𝑦))
1312eleq1d 2837 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑥(2nd𝑟)𝑦) ∈ 𝑖 ↔ (𝑥𝐻𝑦) ∈ 𝑖))
14132ralbidv 3129 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 ↔ ∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖))
1514imbi1d 346 . . . . . 6 (𝑟 = 𝑅 → ((∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ (∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
161, 15raleqbidv 3320 . . . . 5 (𝑟 = 𝑅 → (∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
171, 16raleqbidv 3320 . . . 4 (𝑟 = 𝑅 → (∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
188, 17anbi12d 634 . . 3 (𝑟 = 𝑅 → ((𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))) ↔ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))))
191, 18rabeqbidv 3399 . 2 (𝑟 = 𝑅 → {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
20 df-pridl 35722 . 2 PrIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
21 fvex 6672 . . 3 (Idl‘𝑅) ∈ V
2221rabex 5203 . 2 {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} ∈ V
2319, 20, 22fvmpt 6760 1 (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   ∨ wo 845   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  {crab 3075   ⊆ wss 3859  ran crn 5526  ‘cfv 6336  (class class class)co 7151  1st c1st 7692  2nd c2nd 7693  RingOpscrngo 35605  Idlcidl 35718  PrIdlcpridl 35719 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-iota 6295  df-fun 6338  df-fv 6344  df-ov 7154  df-pridl 35722 This theorem is referenced by:  ispridl  35745
 Copyright terms: Public domain W3C validator