 Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlval Structured version   Visualization version   GIF version

Theorem pridlval 34318
 Description: The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
pridlval.1 𝐺 = (1st𝑅)
pridlval.2 𝐻 = (2nd𝑅)
pridlval.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlval (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
Distinct variable groups:   𝑅,𝑖,𝑥,𝑦,𝑎,𝑏   𝑖,𝑋   𝑖,𝐻
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑖,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem pridlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6412 . . 3 (𝑟 = 𝑅 → (Idl‘𝑟) = (Idl‘𝑅))
2 fveq2 6412 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
3 pridlval.1 . . . . . . . 8 𝐺 = (1st𝑅)
42, 3syl6eqr 2852 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
54rneqd 5557 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
6 pridlval.3 . . . . . 6 𝑋 = ran 𝐺
75, 6syl6eqr 2852 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
87neeq2d 3032 . . . 4 (𝑟 = 𝑅 → (𝑖 ≠ ran (1st𝑟) ↔ 𝑖𝑋))
9 fveq2 6412 . . . . . . . . . . 11 (𝑟 = 𝑅 → (2nd𝑟) = (2nd𝑅))
10 pridlval.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
119, 10syl6eqr 2852 . . . . . . . . . 10 (𝑟 = 𝑅 → (2nd𝑟) = 𝐻)
1211oveqd 6896 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(2nd𝑟)𝑦) = (𝑥𝐻𝑦))
1312eleq1d 2864 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑥(2nd𝑟)𝑦) ∈ 𝑖 ↔ (𝑥𝐻𝑦) ∈ 𝑖))
14132ralbidv 3171 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 ↔ ∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖))
1514imbi1d 333 . . . . . 6 (𝑟 = 𝑅 → ((∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ (∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
161, 15raleqbidv 3336 . . . . 5 (𝑟 = 𝑅 → (∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
171, 16raleqbidv 3336 . . . 4 (𝑟 = 𝑅 → (∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
188, 17anbi12d 625 . . 3 (𝑟 = 𝑅 → ((𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))) ↔ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))))
191, 18rabeqbidv 3380 . 2 (𝑟 = 𝑅 → {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
20 df-pridl 34296 . 2 PrIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
21 fvex 6425 . . 3 (Idl‘𝑅) ∈ V
2221rabex 5008 . 2 {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} ∈ V
2319, 20, 22fvmpt 6508 1 (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 385   ∨ wo 874   = wceq 1653   ∈ wcel 2157   ≠ wne 2972  ∀wral 3090  {crab 3094   ⊆ wss 3770  ran crn 5314  ‘cfv 6102  (class class class)co 6879  1st c1st 7400  2nd c2nd 7401  RingOpscrngo 34179  Idlcidl 34292  PrIdlcpridl 34293 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pr 5098 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-iota 6065  df-fun 6104  df-fv 6110  df-ov 6882  df-pridl 34296 This theorem is referenced by:  ispridl  34319
 Copyright terms: Public domain W3C validator