Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispridlc Structured version   Visualization version   GIF version

Theorem ispridlc 38030
Description: The predicate "is a prime ideal". Alternate definition for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st𝑅)
ispridlc.2 𝐻 = (2nd𝑅)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
ispridlc (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
Distinct variable groups:   𝑅,𝑎,𝑏   𝑃,𝑎,𝑏   𝑋,𝑎,𝑏   𝐻,𝑎,𝑏
Allowed substitution hints:   𝐺(𝑎,𝑏)

Proof of Theorem ispridlc
Dummy variables 𝑥 𝑦 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngorngo 37960 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 ispridlc.1 . . . . 5 𝐺 = (1st𝑅)
3 ispridlc.2 . . . . 5 𝐻 = (2nd𝑅)
4 ispridlc.3 . . . . 5 𝑋 = ran 𝐺
52, 3, 4ispridl 37994 . . . 4 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
61, 5syl 17 . . 3 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
7 snssi 4833 . . . . . . . . . . . . 13 (𝑎𝑋 → {𝑎} ⊆ 𝑋)
82, 4igenidl 38023 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ {𝑎} ⊆ 𝑋) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅))
91, 7, 8syl2an 595 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅))
109adantrr 716 . . . . . . . . . . 11 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅))
11 snssi 4833 . . . . . . . . . . . . 13 (𝑏𝑋 → {𝑏} ⊆ 𝑋)
122, 4igenidl 38023 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ {𝑏} ⊆ 𝑋) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅))
131, 11, 12syl2an 595 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅))
1413adantrl 715 . . . . . . . . . . 11 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅))
15 raleq 3331 . . . . . . . . . . . . 13 (𝑟 = (𝑅 IdlGen {𝑎}) → (∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃))
16 sseq1 4034 . . . . . . . . . . . . . 14 (𝑟 = (𝑅 IdlGen {𝑎}) → (𝑟𝑃 ↔ (𝑅 IdlGen {𝑎}) ⊆ 𝑃))
1716orbi1d 915 . . . . . . . . . . . . 13 (𝑟 = (𝑅 IdlGen {𝑎}) → ((𝑟𝑃𝑠𝑃) ↔ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃)))
1815, 17imbi12d 344 . . . . . . . . . . . 12 (𝑟 = (𝑅 IdlGen {𝑎}) → ((∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) ↔ (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃))))
19 raleq 3331 . . . . . . . . . . . . . 14 (𝑠 = (𝑅 IdlGen {𝑏}) → (∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃))
2019ralbidv 3184 . . . . . . . . . . . . 13 (𝑠 = (𝑅 IdlGen {𝑏}) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃))
21 sseq1 4034 . . . . . . . . . . . . . 14 (𝑠 = (𝑅 IdlGen {𝑏}) → (𝑠𝑃 ↔ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))
2221orbi2d 914 . . . . . . . . . . . . 13 (𝑠 = (𝑅 IdlGen {𝑏}) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃) ↔ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)))
2320, 22imbi12d 344 . . . . . . . . . . . 12 (𝑠 = (𝑅 IdlGen {𝑏}) → ((∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃)) ↔ (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
2418, 23rspc2v 3646 . . . . . . . . . . 11 (((𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅) ∧ (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
2510, 14, 24syl2anc 583 . . . . . . . . . 10 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
2625adantlr 714 . . . . . . . . 9 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
272, 3, 4prnc 38027 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑅 IdlGen {𝑎}) = {𝑥𝑋 ∣ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)})
28 df-rab 3444 . . . . . . . . . . . . . . . . . . 19 {𝑥𝑋 ∣ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)} = {𝑥 ∣ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))}
2927, 28eqtrdi 2796 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑅 IdlGen {𝑎}) = {𝑥 ∣ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))})
3029eqabrd 2887 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑥 ∈ (𝑅 IdlGen {𝑎}) ↔ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))))
3130adantrr 716 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑥 ∈ (𝑅 IdlGen {𝑎}) ↔ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))))
322, 3, 4prnc 38027 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑅 IdlGen {𝑏}) = {𝑦𝑋 ∣ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)})
33 df-rab 3444 . . . . . . . . . . . . . . . . . . 19 {𝑦𝑋 ∣ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)} = {𝑦 ∣ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))}
3432, 33eqtrdi 2796 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑅 IdlGen {𝑏}) = {𝑦 ∣ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))})
3534eqabrd 2887 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑦 ∈ (𝑅 IdlGen {𝑏}) ↔ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
3635adantrl 715 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑦 ∈ (𝑅 IdlGen {𝑏}) ↔ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
3731, 36anbi12d 631 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))))
3837adantlr 714 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))))
3938adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))))
40 reeanv 3235 . . . . . . . . . . . . . . . 16 (∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) ↔ (∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))
4140anbi2i 622 . . . . . . . . . . . . . . 15 (((𝑥𝑋𝑦𝑋) ∧ ∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥𝑋𝑦𝑋) ∧ (∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
42 an4 655 . . . . . . . . . . . . . . 15 (((𝑥𝑋𝑦𝑋) ∧ (∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
4341, 42bitri 275 . . . . . . . . . . . . . 14 (((𝑥𝑋𝑦𝑋) ∧ ∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
442, 3, 4crngm4 37963 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ CRingOps ∧ (𝑟𝑋𝑠𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
45443com23 1126 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
46453expa 1118 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
4746adantllr 718 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
4847adantlr 714 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
492, 3, 4rngocl 37861 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝑟𝑋𝑠𝑋) → (𝑟𝐻𝑠) ∈ 𝑋)
501, 49syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ CRingOps ∧ 𝑟𝑋𝑠𝑋) → (𝑟𝐻𝑠) ∈ 𝑋)
51503expb 1120 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ CRingOps ∧ (𝑟𝑋𝑠𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋)
5251adantlr 714 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑟𝑋𝑠𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋)
5352adantlr 714 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋)
542, 3, 4idllmulcl 37980 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ ((𝑎𝐻𝑏) ∈ 𝑃 ∧ (𝑟𝐻𝑠) ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
551, 54sylanl1 679 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ ((𝑎𝐻𝑏) ∈ 𝑃 ∧ (𝑟𝐻𝑠) ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5655anassrs 467 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝐻𝑠) ∈ 𝑋) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5753, 56syldan 590 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5857adantllr 718 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5948, 58eqeltrrd 2845 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)) ∈ 𝑃)
60 oveq12 7457 . . . . . . . . . . . . . . . . . 18 ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
6160eleq1d 2829 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → ((𝑥𝐻𝑦) ∈ 𝑃 ↔ ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)) ∈ 𝑃))
6259, 61syl5ibrcom 247 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) ∈ 𝑃))
6362rexlimdvva 3219 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) ∈ 𝑃))
6463adantld 490 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (((𝑥𝑋𝑦𝑋) ∧ ∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) → (𝑥𝐻𝑦) ∈ 𝑃))
6543, 64biimtrrid 243 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))) → (𝑥𝐻𝑦) ∈ 𝑃))
6639, 65sylbid 240 . . . . . . . . . . . 12 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) → (𝑥𝐻𝑦) ∈ 𝑃))
6766ralrimivv 3206 . . . . . . . . . . 11 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃)
6867ex 412 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝐻𝑏) ∈ 𝑃 → ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃))
692, 4igenss 38022 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ {𝑎} ⊆ 𝑋) → {𝑎} ⊆ (𝑅 IdlGen {𝑎}))
701, 7, 69syl2an 595 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → {𝑎} ⊆ (𝑅 IdlGen {𝑎}))
71 vex 3492 . . . . . . . . . . . . . . . 16 𝑎 ∈ V
7271snss 4810 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝑅 IdlGen {𝑎}) ↔ {𝑎} ⊆ (𝑅 IdlGen {𝑎}))
7370, 72sylibr 234 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → 𝑎 ∈ (𝑅 IdlGen {𝑎}))
7473adantrr 716 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → 𝑎 ∈ (𝑅 IdlGen {𝑎}))
75 ssel 4002 . . . . . . . . . . . . 13 ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 → (𝑎 ∈ (𝑅 IdlGen {𝑎}) → 𝑎𝑃))
7674, 75syl5com 31 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑎𝑃))
772, 4igenss 38022 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ {𝑏} ⊆ 𝑋) → {𝑏} ⊆ (𝑅 IdlGen {𝑏}))
781, 11, 77syl2an 595 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → {𝑏} ⊆ (𝑅 IdlGen {𝑏}))
79 vex 3492 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
8079snss 4810 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝑅 IdlGen {𝑏}) ↔ {𝑏} ⊆ (𝑅 IdlGen {𝑏}))
8178, 80sylibr 234 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → 𝑏 ∈ (𝑅 IdlGen {𝑏}))
8281adantrl 715 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → 𝑏 ∈ (𝑅 IdlGen {𝑏}))
83 ssel 4002 . . . . . . . . . . . . 13 ((𝑅 IdlGen {𝑏}) ⊆ 𝑃 → (𝑏 ∈ (𝑅 IdlGen {𝑏}) → 𝑏𝑃))
8482, 83syl5com 31 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → ((𝑅 IdlGen {𝑏}) ⊆ 𝑃𝑏𝑃))
8576, 84orim12d 965 . . . . . . . . . . 11 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃) → (𝑎𝑃𝑏𝑃)))
8685adantlr 714 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃) → (𝑎𝑃𝑏𝑃)))
8768, 86imim12d 81 . . . . . . . . 9 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → ((∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)) → ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
8826, 87syld 47 . . . . . . . 8 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
8988ralrimdvva 3217 . . . . . . 7 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
9089ex 412 . . . . . 6 (𝑅 ∈ CRingOps → (𝑃 ∈ (Idl‘𝑅) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
9190adantrd 491 . . . . 5 (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
9291imdistand 570 . . . 4 (𝑅 ∈ CRingOps → (((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))) → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
93 df-3an 1089 . . . 4 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))))
94 df-3an 1089 . . . 4 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
9592, 93, 943imtr4g 296 . . 3 (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
966, 95sylbid 240 . 2 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
972, 3, 4ispridl2 37998 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅))
9897ex 412 . . 3 (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrIdl‘𝑅)))
991, 98syl 17 . 2 (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrIdl‘𝑅)))
10096, 99impbid 212 1 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  {crab 3443  wss 3976  {csn 4648  ran crn 5701  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  RingOpscrngo 37854  CRingOpsccring 37953  Idlcidl 37967  PrIdlcpridl 37968   IdlGen cigen 38019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-grpo 30525  df-gid 30526  df-ginv 30527  df-ablo 30577  df-ass 37803  df-exid 37805  df-mgmOLD 37809  df-sgrOLD 37821  df-mndo 37827  df-rngo 37855  df-com2 37950  df-crngo 37954  df-idl 37970  df-pridl 37971  df-igen 38020
This theorem is referenced by:  pridlc  38031  isdmn3  38034
  Copyright terms: Public domain W3C validator