Step | Hyp | Ref
| Expression |
1 | | crngorngo 36158 |
. . . 4
⊢ (𝑅 ∈ CRingOps → 𝑅 ∈
RingOps) |
2 | | ispridlc.1 |
. . . . 5
⊢ 𝐺 = (1st ‘𝑅) |
3 | | ispridlc.2 |
. . . . 5
⊢ 𝐻 = (2nd ‘𝑅) |
4 | | ispridlc.3 |
. . . . 5
⊢ 𝑋 = ran 𝐺 |
5 | 2, 3, 4 | ispridl 36192 |
. . . 4
⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))))) |
6 | 1, 5 | syl 17 |
. . 3
⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))))) |
7 | | snssi 4741 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ 𝑋 → {𝑎} ⊆ 𝑋) |
8 | 2, 4 | igenidl 36221 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ RingOps ∧ {𝑎} ⊆ 𝑋) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅)) |
9 | 1, 7, 8 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅)) |
10 | 9 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅)) |
11 | | snssi 4741 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ 𝑋 → {𝑏} ⊆ 𝑋) |
12 | 2, 4 | igenidl 36221 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ RingOps ∧ {𝑏} ⊆ 𝑋) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅)) |
13 | 1, 11, 12 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅)) |
14 | 13 | adantrl 713 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅)) |
15 | | raleq 3342 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑅 IdlGen {𝑎}) → (∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃)) |
16 | | sseq1 3946 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑅 IdlGen {𝑎}) → (𝑟 ⊆ 𝑃 ↔ (𝑅 IdlGen {𝑎}) ⊆ 𝑃)) |
17 | 16 | orbi1d 914 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑅 IdlGen {𝑎}) → ((𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃) ↔ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))) |
18 | 15, 17 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑅 IdlGen {𝑎}) → ((∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) ↔ (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)))) |
19 | | raleq 3342 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑅 IdlGen {𝑏}) → (∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃)) |
20 | 19 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑅 IdlGen {𝑏}) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃)) |
21 | | sseq1 3946 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑅 IdlGen {𝑏}) → (𝑠 ⊆ 𝑃 ↔ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)) |
22 | 21 | orbi2d 913 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑅 IdlGen {𝑏}) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃) ↔ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))) |
23 | 20, 22 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑅 IdlGen {𝑏}) → ((∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) ↔ (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)))) |
24 | 18, 23 | rspc2v 3570 |
. . . . . . . . . . 11
⊢ (((𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅) ∧ (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)))) |
25 | 10, 14, 24 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)))) |
26 | 25 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)))) |
27 | 2, 3, 4 | prnc 36225 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → (𝑅 IdlGen {𝑎}) = {𝑥 ∈ 𝑋 ∣ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)}) |
28 | | df-rab 3073 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑥 ∈ 𝑋 ∣ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)} = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎))} |
29 | 27, 28 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → (𝑅 IdlGen {𝑎}) = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎))}) |
30 | 29 | abeq2d 2874 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → (𝑥 ∈ (𝑅 IdlGen {𝑎}) ↔ (𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)))) |
31 | 30 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑥 ∈ (𝑅 IdlGen {𝑎}) ↔ (𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)))) |
32 | 2, 3, 4 | prnc 36225 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → (𝑅 IdlGen {𝑏}) = {𝑦 ∈ 𝑋 ∣ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)}) |
33 | | df-rab 3073 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑦 ∈ 𝑋 ∣ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)} = {𝑦 ∣ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))} |
34 | 32, 33 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → (𝑅 IdlGen {𝑏}) = {𝑦 ∣ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))}) |
35 | 34 | abeq2d 2874 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → (𝑦 ∈ (𝑅 IdlGen {𝑏}) ↔ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)))) |
36 | 35 | adantrl 713 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑦 ∈ (𝑅 IdlGen {𝑏}) ↔ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)))) |
37 | 31, 36 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))))) |
38 | 37 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))))) |
39 | 38 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))))) |
40 | | reeanv 3294 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑟 ∈
𝑋 ∃𝑠 ∈ 𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) ↔ (∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))) |
41 | 40 | anbi2i 623 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ ∃𝑟 ∈ 𝑋 ∃𝑠 ∈ 𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)))) |
42 | | an4 653 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)))) |
43 | 41, 42 | bitri 274 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ ∃𝑟 ∈ 𝑋 ∃𝑠 ∈ 𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)))) |
44 | 2, 3, 4 | crngm4 36161 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ CRingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) |
45 | 44 | 3com23 1125 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) |
46 | 45 | 3expa 1117 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) |
47 | 46 | adantllr 716 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) |
48 | 47 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
CRingOps ∧ 𝑃 ∈
(Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) |
49 | 2, 3, 4 | rngocl 36059 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ RingOps ∧ 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋) → (𝑟𝐻𝑠) ∈ 𝑋) |
50 | 1, 49 | syl3an1 1162 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ CRingOps ∧ 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋) → (𝑟𝐻𝑠) ∈ 𝑋) |
51 | 50 | 3expb 1119 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ CRingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋) |
52 | 51 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋) |
53 | 52 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋) |
54 | 2, 3, 4 | idllmulcl 36178 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ ((𝑎𝐻𝑏) ∈ 𝑃 ∧ (𝑟𝐻𝑠) ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃) |
55 | 1, 54 | sylanl1 677 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ ((𝑎𝐻𝑏) ∈ 𝑃 ∧ (𝑟𝐻𝑠) ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃) |
56 | 55 | anassrs 468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝐻𝑠) ∈ 𝑋) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃) |
57 | 53, 56 | syldan 591 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃) |
58 | 57 | adantllr 716 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
CRingOps ∧ 𝑃 ∈
(Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃) |
59 | 48, 58 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
CRingOps ∧ 𝑃 ∈
(Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)) ∈ 𝑃) |
60 | | oveq12 7284 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) |
61 | 60 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → ((𝑥𝐻𝑦) ∈ 𝑃 ↔ ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)) ∈ 𝑃)) |
62 | 59, 61 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
CRingOps ∧ 𝑃 ∈
(Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) ∈ 𝑃)) |
63 | 62 | rexlimdvva 3223 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (∃𝑟 ∈ 𝑋 ∃𝑠 ∈ 𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) ∈ 𝑃)) |
64 | 63 | adantld 491 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ ∃𝑟 ∈ 𝑋 ∃𝑠 ∈ 𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) → (𝑥𝐻𝑦) ∈ 𝑃)) |
65 | 43, 64 | syl5bir 242 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))) → (𝑥𝐻𝑦) ∈ 𝑃)) |
66 | 39, 65 | sylbid 239 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) → (𝑥𝐻𝑦) ∈ 𝑃)) |
67 | 66 | ralrimivv 3122 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃) |
68 | 67 | ex 413 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎𝐻𝑏) ∈ 𝑃 → ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃)) |
69 | 2, 4 | igenss 36220 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ RingOps ∧ {𝑎} ⊆ 𝑋) → {𝑎} ⊆ (𝑅 IdlGen {𝑎})) |
70 | 1, 7, 69 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → {𝑎} ⊆ (𝑅 IdlGen {𝑎})) |
71 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑎 ∈ V |
72 | 71 | snss 4719 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ (𝑅 IdlGen {𝑎}) ↔ {𝑎} ⊆ (𝑅 IdlGen {𝑎})) |
73 | 70, 72 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → 𝑎 ∈ (𝑅 IdlGen {𝑎})) |
74 | 73 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑎 ∈ (𝑅 IdlGen {𝑎})) |
75 | | ssel 3914 |
. . . . . . . . . . . . 13
⊢ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 → (𝑎 ∈ (𝑅 IdlGen {𝑎}) → 𝑎 ∈ 𝑃)) |
76 | 74, 75 | syl5com 31 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 → 𝑎 ∈ 𝑃)) |
77 | 2, 4 | igenss 36220 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ RingOps ∧ {𝑏} ⊆ 𝑋) → {𝑏} ⊆ (𝑅 IdlGen {𝑏})) |
78 | 1, 11, 77 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → {𝑏} ⊆ (𝑅 IdlGen {𝑏})) |
79 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑏 ∈ V |
80 | 79 | snss 4719 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (𝑅 IdlGen {𝑏}) ↔ {𝑏} ⊆ (𝑅 IdlGen {𝑏})) |
81 | 78, 80 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → 𝑏 ∈ (𝑅 IdlGen {𝑏})) |
82 | 81 | adantrl 713 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑏 ∈ (𝑅 IdlGen {𝑏})) |
83 | | ssel 3914 |
. . . . . . . . . . . . 13
⊢ ((𝑅 IdlGen {𝑏}) ⊆ 𝑃 → (𝑏 ∈ (𝑅 IdlGen {𝑏}) → 𝑏 ∈ 𝑃)) |
84 | 82, 83 | syl5com 31 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑅 IdlGen {𝑏}) ⊆ 𝑃 → 𝑏 ∈ 𝑃)) |
85 | 76, 84 | orim12d 962 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃) → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
86 | 85 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃) → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
87 | 68, 86 | imim12d 81 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)) → ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
88 | 26, 87 | syld 47 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
89 | 88 | ralrimdvva 3125 |
. . . . . . 7
⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
90 | 89 | ex 413 |
. . . . . 6
⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (Idl‘𝑅) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
91 | 90 | adantrd 492 |
. . . . 5
⊢ (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
92 | 91 | imdistand 571 |
. . . 4
⊢ (𝑅 ∈ CRingOps → (((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))) → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
93 | | df-3an 1088 |
. . . 4
⊢ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)))) |
94 | | df-3an 1088 |
. . . 4
⊢ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
95 | 92, 93, 94 | 3imtr4g 296 |
. . 3
⊢ (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
96 | 6, 95 | sylbid 239 |
. 2
⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
97 | 2, 3, 4 | ispridl2 36196 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅)) |
98 | 97 | ex 413 |
. . 3
⊢ (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) → 𝑃 ∈ (PrIdl‘𝑅))) |
99 | 1, 98 | syl 17 |
. 2
⊢ (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) → 𝑃 ∈ (PrIdl‘𝑅))) |
100 | 96, 99 | impbid 211 |
1
⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |