Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispridlc Structured version   Visualization version   GIF version

Theorem ispridlc 38054
Description: The predicate "is a prime ideal". Alternate definition for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st𝑅)
ispridlc.2 𝐻 = (2nd𝑅)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
ispridlc (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
Distinct variable groups:   𝑅,𝑎,𝑏   𝑃,𝑎,𝑏   𝑋,𝑎,𝑏   𝐻,𝑎,𝑏
Allowed substitution hints:   𝐺(𝑎,𝑏)

Proof of Theorem ispridlc
Dummy variables 𝑥 𝑦 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngorngo 37984 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 ispridlc.1 . . . . 5 𝐺 = (1st𝑅)
3 ispridlc.2 . . . . 5 𝐻 = (2nd𝑅)
4 ispridlc.3 . . . . 5 𝑋 = ran 𝐺
52, 3, 4ispridl 38018 . . . 4 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
61, 5syl 17 . . 3 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
7 snssi 4759 . . . . . . . . . . . . 13 (𝑎𝑋 → {𝑎} ⊆ 𝑋)
82, 4igenidl 38047 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ {𝑎} ⊆ 𝑋) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅))
91, 7, 8syl2an 596 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅))
109adantrr 717 . . . . . . . . . . 11 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅))
11 snssi 4759 . . . . . . . . . . . . 13 (𝑏𝑋 → {𝑏} ⊆ 𝑋)
122, 4igenidl 38047 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ {𝑏} ⊆ 𝑋) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅))
131, 11, 12syl2an 596 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅))
1413adantrl 716 . . . . . . . . . . 11 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅))
15 raleq 3286 . . . . . . . . . . . . 13 (𝑟 = (𝑅 IdlGen {𝑎}) → (∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃))
16 sseq1 3961 . . . . . . . . . . . . . 14 (𝑟 = (𝑅 IdlGen {𝑎}) → (𝑟𝑃 ↔ (𝑅 IdlGen {𝑎}) ⊆ 𝑃))
1716orbi1d 916 . . . . . . . . . . . . 13 (𝑟 = (𝑅 IdlGen {𝑎}) → ((𝑟𝑃𝑠𝑃) ↔ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃)))
1815, 17imbi12d 344 . . . . . . . . . . . 12 (𝑟 = (𝑅 IdlGen {𝑎}) → ((∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) ↔ (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃))))
19 raleq 3286 . . . . . . . . . . . . . 14 (𝑠 = (𝑅 IdlGen {𝑏}) → (∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃))
2019ralbidv 3152 . . . . . . . . . . . . 13 (𝑠 = (𝑅 IdlGen {𝑏}) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃))
21 sseq1 3961 . . . . . . . . . . . . . 14 (𝑠 = (𝑅 IdlGen {𝑏}) → (𝑠𝑃 ↔ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))
2221orbi2d 915 . . . . . . . . . . . . 13 (𝑠 = (𝑅 IdlGen {𝑏}) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃) ↔ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)))
2320, 22imbi12d 344 . . . . . . . . . . . 12 (𝑠 = (𝑅 IdlGen {𝑏}) → ((∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃)) ↔ (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
2418, 23rspc2v 3588 . . . . . . . . . . 11 (((𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅) ∧ (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
2510, 14, 24syl2anc 584 . . . . . . . . . 10 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
2625adantlr 715 . . . . . . . . 9 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
272, 3, 4prnc 38051 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑅 IdlGen {𝑎}) = {𝑥𝑋 ∣ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)})
28 df-rab 3395 . . . . . . . . . . . . . . . . . . 19 {𝑥𝑋 ∣ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)} = {𝑥 ∣ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))}
2927, 28eqtrdi 2780 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑅 IdlGen {𝑎}) = {𝑥 ∣ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))})
3029eqabrd 2870 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑥 ∈ (𝑅 IdlGen {𝑎}) ↔ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))))
3130adantrr 717 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑥 ∈ (𝑅 IdlGen {𝑎}) ↔ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))))
322, 3, 4prnc 38051 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑅 IdlGen {𝑏}) = {𝑦𝑋 ∣ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)})
33 df-rab 3395 . . . . . . . . . . . . . . . . . . 19 {𝑦𝑋 ∣ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)} = {𝑦 ∣ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))}
3432, 33eqtrdi 2780 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑅 IdlGen {𝑏}) = {𝑦 ∣ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))})
3534eqabrd 2870 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑦 ∈ (𝑅 IdlGen {𝑏}) ↔ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
3635adantrl 716 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑦 ∈ (𝑅 IdlGen {𝑏}) ↔ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
3731, 36anbi12d 632 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))))
3837adantlr 715 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))))
3938adantr 480 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))))
40 reeanv 3201 . . . . . . . . . . . . . . . 16 (∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) ↔ (∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))
4140anbi2i 623 . . . . . . . . . . . . . . 15 (((𝑥𝑋𝑦𝑋) ∧ ∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥𝑋𝑦𝑋) ∧ (∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
42 an4 656 . . . . . . . . . . . . . . 15 (((𝑥𝑋𝑦𝑋) ∧ (∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
4341, 42bitri 275 . . . . . . . . . . . . . 14 (((𝑥𝑋𝑦𝑋) ∧ ∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
442, 3, 4crngm4 37987 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ CRingOps ∧ (𝑟𝑋𝑠𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
45443com23 1126 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
46453expa 1118 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
4746adantllr 719 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
4847adantlr 715 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
492, 3, 4rngocl 37885 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝑟𝑋𝑠𝑋) → (𝑟𝐻𝑠) ∈ 𝑋)
501, 49syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ CRingOps ∧ 𝑟𝑋𝑠𝑋) → (𝑟𝐻𝑠) ∈ 𝑋)
51503expb 1120 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ CRingOps ∧ (𝑟𝑋𝑠𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋)
5251adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑟𝑋𝑠𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋)
5352adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋)
542, 3, 4idllmulcl 38004 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ ((𝑎𝐻𝑏) ∈ 𝑃 ∧ (𝑟𝐻𝑠) ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
551, 54sylanl1 680 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ ((𝑎𝐻𝑏) ∈ 𝑃 ∧ (𝑟𝐻𝑠) ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5655anassrs 467 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝐻𝑠) ∈ 𝑋) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5753, 56syldan 591 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5857adantllr 719 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5948, 58eqeltrrd 2829 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)) ∈ 𝑃)
60 oveq12 7358 . . . . . . . . . . . . . . . . . 18 ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
6160eleq1d 2813 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → ((𝑥𝐻𝑦) ∈ 𝑃 ↔ ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)) ∈ 𝑃))
6259, 61syl5ibrcom 247 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) ∈ 𝑃))
6362rexlimdvva 3186 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) ∈ 𝑃))
6463adantld 490 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (((𝑥𝑋𝑦𝑋) ∧ ∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) → (𝑥𝐻𝑦) ∈ 𝑃))
6543, 64biimtrrid 243 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))) → (𝑥𝐻𝑦) ∈ 𝑃))
6639, 65sylbid 240 . . . . . . . . . . . 12 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) → (𝑥𝐻𝑦) ∈ 𝑃))
6766ralrimivv 3170 . . . . . . . . . . 11 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃)
6867ex 412 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝐻𝑏) ∈ 𝑃 → ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃))
692, 4igenss 38046 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ {𝑎} ⊆ 𝑋) → {𝑎} ⊆ (𝑅 IdlGen {𝑎}))
701, 7, 69syl2an 596 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → {𝑎} ⊆ (𝑅 IdlGen {𝑎}))
71 vex 3440 . . . . . . . . . . . . . . . 16 𝑎 ∈ V
7271snss 4736 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝑅 IdlGen {𝑎}) ↔ {𝑎} ⊆ (𝑅 IdlGen {𝑎}))
7370, 72sylibr 234 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → 𝑎 ∈ (𝑅 IdlGen {𝑎}))
7473adantrr 717 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → 𝑎 ∈ (𝑅 IdlGen {𝑎}))
75 ssel 3929 . . . . . . . . . . . . 13 ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 → (𝑎 ∈ (𝑅 IdlGen {𝑎}) → 𝑎𝑃))
7674, 75syl5com 31 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑎𝑃))
772, 4igenss 38046 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ {𝑏} ⊆ 𝑋) → {𝑏} ⊆ (𝑅 IdlGen {𝑏}))
781, 11, 77syl2an 596 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → {𝑏} ⊆ (𝑅 IdlGen {𝑏}))
79 vex 3440 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
8079snss 4736 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝑅 IdlGen {𝑏}) ↔ {𝑏} ⊆ (𝑅 IdlGen {𝑏}))
8178, 80sylibr 234 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → 𝑏 ∈ (𝑅 IdlGen {𝑏}))
8281adantrl 716 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → 𝑏 ∈ (𝑅 IdlGen {𝑏}))
83 ssel 3929 . . . . . . . . . . . . 13 ((𝑅 IdlGen {𝑏}) ⊆ 𝑃 → (𝑏 ∈ (𝑅 IdlGen {𝑏}) → 𝑏𝑃))
8482, 83syl5com 31 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → ((𝑅 IdlGen {𝑏}) ⊆ 𝑃𝑏𝑃))
8576, 84orim12d 966 . . . . . . . . . . 11 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃) → (𝑎𝑃𝑏𝑃)))
8685adantlr 715 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃) → (𝑎𝑃𝑏𝑃)))
8768, 86imim12d 81 . . . . . . . . 9 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → ((∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)) → ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
8826, 87syld 47 . . . . . . . 8 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
8988ralrimdvva 3184 . . . . . . 7 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
9089ex 412 . . . . . 6 (𝑅 ∈ CRingOps → (𝑃 ∈ (Idl‘𝑅) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
9190adantrd 491 . . . . 5 (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
9291imdistand 570 . . . 4 (𝑅 ∈ CRingOps → (((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))) → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
93 df-3an 1088 . . . 4 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))))
94 df-3an 1088 . . . 4 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
9592, 93, 943imtr4g 296 . . 3 (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
966, 95sylbid 240 . 2 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
972, 3, 4ispridl2 38022 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅))
9897ex 412 . . 3 (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrIdl‘𝑅)))
991, 98syl 17 . 2 (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrIdl‘𝑅)))
10096, 99impbid 212 1 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3394  wss 3903  {csn 4577  ran crn 5620  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  RingOpscrngo 37878  CRingOpsccring 37977  Idlcidl 37991  PrIdlcpridl 37992   IdlGen cigen 38043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-grpo 30437  df-gid 30438  df-ginv 30439  df-ablo 30489  df-ass 37827  df-exid 37829  df-mgmOLD 37833  df-sgrOLD 37845  df-mndo 37851  df-rngo 37879  df-com2 37974  df-crngo 37978  df-idl 37994  df-pridl 37995  df-igen 38044
This theorem is referenced by:  pridlc  38055  isdmn3  38058
  Copyright terms: Public domain W3C validator