Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispridlc Structured version   Visualization version   GIF version

Theorem ispridlc 34787
Description: The predicate "is a prime ideal". Alternate definition for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st𝑅)
ispridlc.2 𝐻 = (2nd𝑅)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
ispridlc (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
Distinct variable groups:   𝑅,𝑎,𝑏   𝑃,𝑎,𝑏   𝑋,𝑎,𝑏   𝐻,𝑎,𝑏
Allowed substitution hints:   𝐺(𝑎,𝑏)

Proof of Theorem ispridlc
Dummy variables 𝑥 𝑦 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngorngo 34717 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 ispridlc.1 . . . . 5 𝐺 = (1st𝑅)
3 ispridlc.2 . . . . 5 𝐻 = (2nd𝑅)
4 ispridlc.3 . . . . 5 𝑋 = ran 𝐺
52, 3, 4ispridl 34751 . . . 4 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
61, 5syl 17 . . 3 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)))))
7 snssi 4615 . . . . . . . . . . . . 13 (𝑎𝑋 → {𝑎} ⊆ 𝑋)
82, 4igenidl 34780 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ {𝑎} ⊆ 𝑋) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅))
91, 7, 8syl2an 586 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅))
109adantrr 704 . . . . . . . . . . 11 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅))
11 snssi 4615 . . . . . . . . . . . . 13 (𝑏𝑋 → {𝑏} ⊆ 𝑋)
122, 4igenidl 34780 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ {𝑏} ⊆ 𝑋) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅))
131, 11, 12syl2an 586 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅))
1413adantrl 703 . . . . . . . . . . 11 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅))
15 raleq 3346 . . . . . . . . . . . . 13 (𝑟 = (𝑅 IdlGen {𝑎}) → (∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃))
16 sseq1 3883 . . . . . . . . . . . . . 14 (𝑟 = (𝑅 IdlGen {𝑎}) → (𝑟𝑃 ↔ (𝑅 IdlGen {𝑎}) ⊆ 𝑃))
1716orbi1d 900 . . . . . . . . . . . . 13 (𝑟 = (𝑅 IdlGen {𝑎}) → ((𝑟𝑃𝑠𝑃) ↔ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃)))
1815, 17imbi12d 337 . . . . . . . . . . . 12 (𝑟 = (𝑅 IdlGen {𝑎}) → ((∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) ↔ (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃))))
19 raleq 3346 . . . . . . . . . . . . . 14 (𝑠 = (𝑅 IdlGen {𝑏}) → (∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃))
2019ralbidv 3148 . . . . . . . . . . . . 13 (𝑠 = (𝑅 IdlGen {𝑏}) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃))
21 sseq1 3883 . . . . . . . . . . . . . 14 (𝑠 = (𝑅 IdlGen {𝑏}) → (𝑠𝑃 ↔ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))
2221orbi2d 899 . . . . . . . . . . . . 13 (𝑠 = (𝑅 IdlGen {𝑏}) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃) ↔ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)))
2320, 22imbi12d 337 . . . . . . . . . . . 12 (𝑠 = (𝑅 IdlGen {𝑏}) → ((∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑠𝑃)) ↔ (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
2418, 23rspc2v 3549 . . . . . . . . . . 11 (((𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅) ∧ (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
2510, 14, 24syl2anc 576 . . . . . . . . . 10 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
2625adantlr 702 . . . . . . . . 9 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))))
272, 3, 4prnc 34784 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑅 IdlGen {𝑎}) = {𝑥𝑋 ∣ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)})
28 df-rab 3098 . . . . . . . . . . . . . . . . . . 19 {𝑥𝑋 ∣ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)} = {𝑥 ∣ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))}
2927, 28syl6eq 2831 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑅 IdlGen {𝑎}) = {𝑥 ∣ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))})
3029abeq2d 2900 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → (𝑥 ∈ (𝑅 IdlGen {𝑎}) ↔ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))))
3130adantrr 704 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑥 ∈ (𝑅 IdlGen {𝑎}) ↔ (𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎))))
322, 3, 4prnc 34784 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑅 IdlGen {𝑏}) = {𝑦𝑋 ∣ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)})
33 df-rab 3098 . . . . . . . . . . . . . . . . . . 19 {𝑦𝑋 ∣ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)} = {𝑦 ∣ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))}
3432, 33syl6eq 2831 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑅 IdlGen {𝑏}) = {𝑦 ∣ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))})
3534abeq2d 2900 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → (𝑦 ∈ (𝑅 IdlGen {𝑏}) ↔ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
3635adantrl 703 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (𝑦 ∈ (𝑅 IdlGen {𝑏}) ↔ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
3731, 36anbi12d 621 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))))
3837adantlr 702 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))))
3938adantr 473 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))))
40 reeanv 3309 . . . . . . . . . . . . . . . 16 (∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) ↔ (∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏)))
4140anbi2i 613 . . . . . . . . . . . . . . 15 (((𝑥𝑋𝑦𝑋) ∧ ∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥𝑋𝑦𝑋) ∧ (∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
42 an4 643 . . . . . . . . . . . . . . 15 (((𝑥𝑋𝑦𝑋) ∧ (∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
4341, 42bitri 267 . . . . . . . . . . . . . 14 (((𝑥𝑋𝑦𝑋) ∧ ∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))))
442, 3, 4crngm4 34720 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ CRingOps ∧ (𝑟𝑋𝑠𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
45443com23 1106 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
46453expa 1098 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
4746adantllr 706 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
4847adantlr 702 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
492, 3, 4rngocl 34618 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝑟𝑋𝑠𝑋) → (𝑟𝐻𝑠) ∈ 𝑋)
501, 49syl3an1 1143 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ CRingOps ∧ 𝑟𝑋𝑠𝑋) → (𝑟𝐻𝑠) ∈ 𝑋)
51503expb 1100 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ CRingOps ∧ (𝑟𝑋𝑠𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋)
5251adantlr 702 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑟𝑋𝑠𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋)
5352adantlr 702 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋)
542, 3, 4idllmulcl 34737 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ ((𝑎𝐻𝑏) ∈ 𝑃 ∧ (𝑟𝐻𝑠) ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
551, 54sylanl1 667 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ ((𝑎𝐻𝑏) ∈ 𝑃 ∧ (𝑟𝐻𝑠) ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5655anassrs 460 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝐻𝑠) ∈ 𝑋) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5753, 56syldan 582 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5857adantllr 706 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃)
5948, 58eqeltrrd 2868 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)) ∈ 𝑃)
60 oveq12 6985 . . . . . . . . . . . . . . . . . 18 ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)))
6160eleq1d 2851 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → ((𝑥𝐻𝑦) ∈ 𝑃 ↔ ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)) ∈ 𝑃))
6259, 61syl5ibrcom 239 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) ∈ 𝑃))
6362rexlimdvva 3240 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) ∈ 𝑃))
6463adantld 483 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (((𝑥𝑋𝑦𝑋) ∧ ∃𝑟𝑋𝑠𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) → (𝑥𝐻𝑦) ∈ 𝑃))
6543, 64syl5bir 235 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (((𝑥𝑋 ∧ ∃𝑟𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦𝑋 ∧ ∃𝑠𝑋 𝑦 = (𝑠𝐻𝑏))) → (𝑥𝐻𝑦) ∈ 𝑃))
6639, 65sylbid 232 . . . . . . . . . . . 12 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) → (𝑥𝐻𝑦) ∈ 𝑃))
6766ralrimivv 3141 . . . . . . . . . . 11 ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃)
6867ex 405 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝐻𝑏) ∈ 𝑃 → ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃))
692, 4igenss 34779 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ {𝑎} ⊆ 𝑋) → {𝑎} ⊆ (𝑅 IdlGen {𝑎}))
701, 7, 69syl2an 586 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → {𝑎} ⊆ (𝑅 IdlGen {𝑎}))
71 vex 3419 . . . . . . . . . . . . . . . 16 𝑎 ∈ V
7271snss 4592 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝑅 IdlGen {𝑎}) ↔ {𝑎} ⊆ (𝑅 IdlGen {𝑎}))
7370, 72sylibr 226 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRingOps ∧ 𝑎𝑋) → 𝑎 ∈ (𝑅 IdlGen {𝑎}))
7473adantrr 704 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → 𝑎 ∈ (𝑅 IdlGen {𝑎}))
75 ssel 3853 . . . . . . . . . . . . 13 ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 → (𝑎 ∈ (𝑅 IdlGen {𝑎}) → 𝑎𝑃))
7674, 75syl5com 31 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃𝑎𝑃))
772, 4igenss 34779 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ {𝑏} ⊆ 𝑋) → {𝑏} ⊆ (𝑅 IdlGen {𝑏}))
781, 11, 77syl2an 586 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → {𝑏} ⊆ (𝑅 IdlGen {𝑏}))
79 vex 3419 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
8079snss 4592 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝑅 IdlGen {𝑏}) ↔ {𝑏} ⊆ (𝑅 IdlGen {𝑏}))
8178, 80sylibr 226 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRingOps ∧ 𝑏𝑋) → 𝑏 ∈ (𝑅 IdlGen {𝑏}))
8281adantrl 703 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → 𝑏 ∈ (𝑅 IdlGen {𝑏}))
83 ssel 3853 . . . . . . . . . . . . 13 ((𝑅 IdlGen {𝑏}) ⊆ 𝑃 → (𝑏 ∈ (𝑅 IdlGen {𝑏}) → 𝑏𝑃))
8482, 83syl5com 31 . . . . . . . . . . . 12 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → ((𝑅 IdlGen {𝑏}) ⊆ 𝑃𝑏𝑃))
8576, 84orim12d 947 . . . . . . . . . . 11 ((𝑅 ∈ CRingOps ∧ (𝑎𝑋𝑏𝑋)) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃) → (𝑎𝑃𝑏𝑃)))
8685adantlr 702 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃) → (𝑎𝑃𝑏𝑃)))
8768, 86imim12d 81 . . . . . . . . 9 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → ((∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)) → ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
8826, 87syld 47 . . . . . . . 8 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
8988ralrimdvva 3145 . . . . . . 7 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
9089ex 405 . . . . . 6 (𝑅 ∈ CRingOps → (𝑃 ∈ (Idl‘𝑅) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
9190adantrd 484 . . . . 5 (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
9291imdistand 563 . . . 4 (𝑅 ∈ CRingOps → (((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))) → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
93 df-3an 1070 . . . 4 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))))
94 df-3an 1070 . . . 4 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋) ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
9592, 93, 943imtr4g 288 . . 3 (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥𝑟𝑦𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟𝑃𝑠𝑃))) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
966, 95sylbid 232 . 2 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
972, 3, 4ispridl2 34755 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅))
9897ex 405 . . 3 (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrIdl‘𝑅)))
991, 98syl 17 . 2 (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrIdl‘𝑅)))
10096, 99impbid 204 1 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2050  {cab 2759  wne 2968  wral 3089  wrex 3090  {crab 3093  wss 3830  {csn 4441  ran crn 5408  cfv 6188  (class class class)co 6976  1st c1st 7499  2nd c2nd 7500  RingOpscrngo 34611  CRingOpsccring 34710  Idlcidl 34724  PrIdlcpridl 34725   IdlGen cigen 34776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-1st 7501  df-2nd 7502  df-grpo 28047  df-gid 28048  df-ginv 28049  df-ablo 28099  df-ass 34560  df-exid 34562  df-mgmOLD 34566  df-sgrOLD 34578  df-mndo 34584  df-rngo 34612  df-com2 34707  df-crngo 34711  df-idl 34727  df-pridl 34728  df-igen 34777
This theorem is referenced by:  pridlc  34788  isdmn3  34791
  Copyright terms: Public domain W3C validator