| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | crngorngo 38007 | . . . 4
⊢ (𝑅 ∈ CRingOps → 𝑅 ∈
RingOps) | 
| 2 |  | ispridlc.1 | . . . . 5
⊢ 𝐺 = (1st ‘𝑅) | 
| 3 |  | ispridlc.2 | . . . . 5
⊢ 𝐻 = (2nd ‘𝑅) | 
| 4 |  | ispridlc.3 | . . . . 5
⊢ 𝑋 = ran 𝐺 | 
| 5 | 2, 3, 4 | ispridl 38041 | . . . 4
⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))))) | 
| 6 | 1, 5 | syl 17 | . . 3
⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))))) | 
| 7 |  | snssi 4808 | . . . . . . . . . . . . 13
⊢ (𝑎 ∈ 𝑋 → {𝑎} ⊆ 𝑋) | 
| 8 | 2, 4 | igenidl 38070 | . . . . . . . . . . . . 13
⊢ ((𝑅 ∈ RingOps ∧ {𝑎} ⊆ 𝑋) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅)) | 
| 9 | 1, 7, 8 | syl2an 596 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅)) | 
| 10 | 9 | adantrr 717 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅)) | 
| 11 |  | snssi 4808 | . . . . . . . . . . . . 13
⊢ (𝑏 ∈ 𝑋 → {𝑏} ⊆ 𝑋) | 
| 12 | 2, 4 | igenidl 38070 | . . . . . . . . . . . . 13
⊢ ((𝑅 ∈ RingOps ∧ {𝑏} ⊆ 𝑋) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅)) | 
| 13 | 1, 11, 12 | syl2an 596 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅)) | 
| 14 | 13 | adantrl 716 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅)) | 
| 15 |  | raleq 3323 | . . . . . . . . . . . . 13
⊢ (𝑟 = (𝑅 IdlGen {𝑎}) → (∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃)) | 
| 16 |  | sseq1 4009 | . . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑅 IdlGen {𝑎}) → (𝑟 ⊆ 𝑃 ↔ (𝑅 IdlGen {𝑎}) ⊆ 𝑃)) | 
| 17 | 16 | orbi1d 917 | . . . . . . . . . . . . 13
⊢ (𝑟 = (𝑅 IdlGen {𝑎}) → ((𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃) ↔ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))) | 
| 18 | 15, 17 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑟 = (𝑅 IdlGen {𝑎}) → ((∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) ↔ (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)))) | 
| 19 |  | raleq 3323 | . . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑅 IdlGen {𝑏}) → (∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃)) | 
| 20 | 19 | ralbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑠 = (𝑅 IdlGen {𝑏}) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃)) | 
| 21 |  | sseq1 4009 | . . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑅 IdlGen {𝑏}) → (𝑠 ⊆ 𝑃 ↔ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)) | 
| 22 | 21 | orbi2d 916 | . . . . . . . . . . . . 13
⊢ (𝑠 = (𝑅 IdlGen {𝑏}) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃) ↔ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃))) | 
| 23 | 20, 22 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑠 = (𝑅 IdlGen {𝑏}) → ((∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) ↔ (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)))) | 
| 24 | 18, 23 | rspc2v 3633 | . . . . . . . . . . 11
⊢ (((𝑅 IdlGen {𝑎}) ∈ (Idl‘𝑅) ∧ (𝑅 IdlGen {𝑏}) ∈ (Idl‘𝑅)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)))) | 
| 25 | 10, 14, 24 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)))) | 
| 26 | 25 | adantlr 715 | . . . . . . . . 9
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → (∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)))) | 
| 27 | 2, 3, 4 | prnc 38074 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → (𝑅 IdlGen {𝑎}) = {𝑥 ∈ 𝑋 ∣ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)}) | 
| 28 |  | df-rab 3437 | . . . . . . . . . . . . . . . . . . 19
⊢ {𝑥 ∈ 𝑋 ∣ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)} = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎))} | 
| 29 | 27, 28 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → (𝑅 IdlGen {𝑎}) = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎))}) | 
| 30 | 29 | eqabrd 2884 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → (𝑥 ∈ (𝑅 IdlGen {𝑎}) ↔ (𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)))) | 
| 31 | 30 | adantrr 717 | . . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑥 ∈ (𝑅 IdlGen {𝑎}) ↔ (𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)))) | 
| 32 | 2, 3, 4 | prnc 38074 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → (𝑅 IdlGen {𝑏}) = {𝑦 ∈ 𝑋 ∣ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)}) | 
| 33 |  | df-rab 3437 | . . . . . . . . . . . . . . . . . . 19
⊢ {𝑦 ∈ 𝑋 ∣ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)} = {𝑦 ∣ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))} | 
| 34 | 32, 33 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → (𝑅 IdlGen {𝑏}) = {𝑦 ∣ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))}) | 
| 35 | 34 | eqabrd 2884 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → (𝑦 ∈ (𝑅 IdlGen {𝑏}) ↔ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)))) | 
| 36 | 35 | adantrl 716 | . . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑦 ∈ (𝑅 IdlGen {𝑏}) ↔ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)))) | 
| 37 | 31, 36 | anbi12d 632 | . . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))))) | 
| 38 | 37 | adantlr 715 | . . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))))) | 
| 39 | 38 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) ↔ ((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))))) | 
| 40 |  | reeanv 3229 | . . . . . . . . . . . . . . . 16
⊢
(∃𝑟 ∈
𝑋 ∃𝑠 ∈ 𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) ↔ (∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))) | 
| 41 | 40 | anbi2i 623 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ ∃𝑟 ∈ 𝑋 ∃𝑠 ∈ 𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)))) | 
| 42 |  | an4 656 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎) ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)))) | 
| 43 | 41, 42 | bitri 275 | . . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ ∃𝑟 ∈ 𝑋 ∃𝑠 ∈ 𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) ↔ ((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏)))) | 
| 44 | 2, 3, 4 | crngm4 38010 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ CRingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) | 
| 45 | 44 | 3com23 1127 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) | 
| 46 | 45 | 3expa 1119 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) | 
| 47 | 46 | adantllr 719 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) | 
| 48 | 47 | adantlr 715 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
CRingOps ∧ 𝑃 ∈
(Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) | 
| 49 | 2, 3, 4 | rngocl 37908 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ RingOps ∧ 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋) → (𝑟𝐻𝑠) ∈ 𝑋) | 
| 50 | 1, 49 | syl3an1 1164 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ CRingOps ∧ 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋) → (𝑟𝐻𝑠) ∈ 𝑋) | 
| 51 | 50 | 3expb 1121 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ CRingOps ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋) | 
| 52 | 51 | adantlr 715 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋) | 
| 53 | 52 | adantlr 715 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → (𝑟𝐻𝑠) ∈ 𝑋) | 
| 54 | 2, 3, 4 | idllmulcl 38027 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ ((𝑎𝐻𝑏) ∈ 𝑃 ∧ (𝑟𝐻𝑠) ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃) | 
| 55 | 1, 54 | sylanl1 680 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ ((𝑎𝐻𝑏) ∈ 𝑃 ∧ (𝑟𝐻𝑠) ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃) | 
| 56 | 55 | anassrs 467 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟𝐻𝑠) ∈ 𝑋) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃) | 
| 57 | 53, 56 | syldan 591 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃) | 
| 58 | 57 | adantllr 719 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
CRingOps ∧ 𝑃 ∈
(Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑠)𝐻(𝑎𝐻𝑏)) ∈ 𝑃) | 
| 59 | 48, 58 | eqeltrrd 2842 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
CRingOps ∧ 𝑃 ∈
(Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)) ∈ 𝑃) | 
| 60 |  | oveq12 7440 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) = ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏))) | 
| 61 | 60 | eleq1d 2826 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → ((𝑥𝐻𝑦) ∈ 𝑃 ↔ ((𝑟𝐻𝑎)𝐻(𝑠𝐻𝑏)) ∈ 𝑃)) | 
| 62 | 59, 61 | syl5ibrcom 247 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
CRingOps ∧ 𝑃 ∈
(Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) ∧ (𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋)) → ((𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) ∈ 𝑃)) | 
| 63 | 62 | rexlimdvva 3213 | . . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (∃𝑟 ∈ 𝑋 ∃𝑠 ∈ 𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏)) → (𝑥𝐻𝑦) ∈ 𝑃)) | 
| 64 | 63 | adantld 490 | . . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ ∃𝑟 ∈ 𝑋 ∃𝑠 ∈ 𝑋 (𝑥 = (𝑟𝐻𝑎) ∧ 𝑦 = (𝑠𝐻𝑏))) → (𝑥𝐻𝑦) ∈ 𝑃)) | 
| 65 | 43, 64 | biimtrrid 243 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → (((𝑥 ∈ 𝑋 ∧ ∃𝑟 ∈ 𝑋 𝑥 = (𝑟𝐻𝑎)) ∧ (𝑦 ∈ 𝑋 ∧ ∃𝑠 ∈ 𝑋 𝑦 = (𝑠𝐻𝑏))) → (𝑥𝐻𝑦) ∈ 𝑃)) | 
| 66 | 39, 65 | sylbid 240 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ((𝑥 ∈ (𝑅 IdlGen {𝑎}) ∧ 𝑦 ∈ (𝑅 IdlGen {𝑏})) → (𝑥𝐻𝑦) ∈ 𝑃)) | 
| 67 | 66 | ralrimivv 3200 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑎𝐻𝑏) ∈ 𝑃) → ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃) | 
| 68 | 67 | ex 412 | . . . . . . . . . 10
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎𝐻𝑏) ∈ 𝑃 → ∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃)) | 
| 69 | 2, 4 | igenss 38069 | . . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ RingOps ∧ {𝑎} ⊆ 𝑋) → {𝑎} ⊆ (𝑅 IdlGen {𝑎})) | 
| 70 | 1, 7, 69 | syl2an 596 | . . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → {𝑎} ⊆ (𝑅 IdlGen {𝑎})) | 
| 71 |  | vex 3484 | . . . . . . . . . . . . . . . 16
⊢ 𝑎 ∈ V | 
| 72 | 71 | snss 4785 | . . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ (𝑅 IdlGen {𝑎}) ↔ {𝑎} ⊆ (𝑅 IdlGen {𝑎})) | 
| 73 | 70, 72 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRingOps ∧ 𝑎 ∈ 𝑋) → 𝑎 ∈ (𝑅 IdlGen {𝑎})) | 
| 74 | 73 | adantrr 717 | . . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑎 ∈ (𝑅 IdlGen {𝑎})) | 
| 75 |  | ssel 3977 | . . . . . . . . . . . . 13
⊢ ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 → (𝑎 ∈ (𝑅 IdlGen {𝑎}) → 𝑎 ∈ 𝑃)) | 
| 76 | 74, 75 | syl5com 31 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 → 𝑎 ∈ 𝑃)) | 
| 77 | 2, 4 | igenss 38069 | . . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ RingOps ∧ {𝑏} ⊆ 𝑋) → {𝑏} ⊆ (𝑅 IdlGen {𝑏})) | 
| 78 | 1, 11, 77 | syl2an 596 | . . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → {𝑏} ⊆ (𝑅 IdlGen {𝑏})) | 
| 79 |  | vex 3484 | . . . . . . . . . . . . . . . 16
⊢ 𝑏 ∈ V | 
| 80 | 79 | snss 4785 | . . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (𝑅 IdlGen {𝑏}) ↔ {𝑏} ⊆ (𝑅 IdlGen {𝑏})) | 
| 81 | 78, 80 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRingOps ∧ 𝑏 ∈ 𝑋) → 𝑏 ∈ (𝑅 IdlGen {𝑏})) | 
| 82 | 81 | adantrl 716 | . . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑏 ∈ (𝑅 IdlGen {𝑏})) | 
| 83 |  | ssel 3977 | . . . . . . . . . . . . 13
⊢ ((𝑅 IdlGen {𝑏}) ⊆ 𝑃 → (𝑏 ∈ (𝑅 IdlGen {𝑏}) → 𝑏 ∈ 𝑃)) | 
| 84 | 82, 83 | syl5com 31 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑅 IdlGen {𝑏}) ⊆ 𝑃 → 𝑏 ∈ 𝑃)) | 
| 85 | 76, 84 | orim12d 967 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ CRingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃) → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) | 
| 86 | 85 | adantlr 715 | . . . . . . . . . 10
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃) → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) | 
| 87 | 68, 86 | imim12d 81 | . . . . . . . . 9
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((∀𝑥 ∈ (𝑅 IdlGen {𝑎})∀𝑦 ∈ (𝑅 IdlGen {𝑏})(𝑥𝐻𝑦) ∈ 𝑃 → ((𝑅 IdlGen {𝑎}) ⊆ 𝑃 ∨ (𝑅 IdlGen {𝑏}) ⊆ 𝑃)) → ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) | 
| 88 | 26, 87 | syld 47 | . . . . . . . 8
⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) | 
| 89 | 88 | ralrimdvva 3211 | . . . . . . 7
⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (Idl‘𝑅)) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) | 
| 90 | 89 | ex 412 | . . . . . 6
⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (Idl‘𝑅) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) | 
| 91 | 90 | adantrd 491 | . . . . 5
⊢ (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) → (∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) | 
| 92 | 91 | imdistand 570 | . . . 4
⊢ (𝑅 ∈ CRingOps → (((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))) → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) | 
| 93 |  | df-3an 1089 | . . . 4
⊢ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃)))) | 
| 94 |  | df-3an 1089 | . . . 4
⊢ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) | 
| 95 | 92, 93, 94 | 3imtr4g 296 | . . 3
⊢ (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑟 ∈ (Idl‘𝑅)∀𝑠 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑟 ⊆ 𝑃 ∨ 𝑠 ⊆ 𝑃))) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) | 
| 96 | 6, 95 | sylbid 240 | . 2
⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) | 
| 97 | 2, 3, 4 | ispridl2 38045 | . . . 4
⊢ ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅)) | 
| 98 | 97 | ex 412 | . . 3
⊢ (𝑅 ∈ RingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) → 𝑃 ∈ (PrIdl‘𝑅))) | 
| 99 | 1, 98 | syl 17 | . 2
⊢ (𝑅 ∈ CRingOps → ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) → 𝑃 ∈ (PrIdl‘𝑅))) | 
| 100 | 96, 99 | impbid 212 | 1
⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |