Detailed syntax breakdown of Definition df-prmidl
| Step | Hyp | Ref
| Expression |
| 1 | | cprmidl 33463 |
. 2
class
PrmIdeal |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | crg 20230 |
. . 3
class
Ring |
| 4 | | vi |
. . . . . . 7
setvar 𝑖 |
| 5 | 4 | cv 1539 |
. . . . . 6
class 𝑖 |
| 6 | 2 | cv 1539 |
. . . . . . 7
class 𝑟 |
| 7 | | cbs 17247 |
. . . . . . 7
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . . . 6
class
(Base‘𝑟) |
| 9 | 5, 8 | wne 2940 |
. . . . 5
wff 𝑖 ≠ (Base‘𝑟) |
| 10 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
| 11 | 10 | cv 1539 |
. . . . . . . . . . . 12
class 𝑥 |
| 12 | | vy |
. . . . . . . . . . . . 13
setvar 𝑦 |
| 13 | 12 | cv 1539 |
. . . . . . . . . . . 12
class 𝑦 |
| 14 | | cmulr 17298 |
. . . . . . . . . . . . 13
class
.r |
| 15 | 6, 14 | cfv 6561 |
. . . . . . . . . . . 12
class
(.r‘𝑟) |
| 16 | 11, 13, 15 | co 7431 |
. . . . . . . . . . 11
class (𝑥(.r‘𝑟)𝑦) |
| 17 | 16, 5 | wcel 2108 |
. . . . . . . . . 10
wff (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 |
| 18 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
| 19 | 18 | cv 1539 |
. . . . . . . . . 10
class 𝑏 |
| 20 | 17, 12, 19 | wral 3061 |
. . . . . . . . 9
wff
∀𝑦 ∈
𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 |
| 21 | | va |
. . . . . . . . . 10
setvar 𝑎 |
| 22 | 21 | cv 1539 |
. . . . . . . . 9
class 𝑎 |
| 23 | 20, 10, 22 | wral 3061 |
. . . . . . . 8
wff
∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 |
| 24 | 22, 5 | wss 3951 |
. . . . . . . . 9
wff 𝑎 ⊆ 𝑖 |
| 25 | 19, 5 | wss 3951 |
. . . . . . . . 9
wff 𝑏 ⊆ 𝑖 |
| 26 | 24, 25 | wo 848 |
. . . . . . . 8
wff (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖) |
| 27 | 23, 26 | wi 4 |
. . . . . . 7
wff
(∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) |
| 28 | | clidl 21216 |
. . . . . . . 8
class
LIdeal |
| 29 | 6, 28 | cfv 6561 |
. . . . . . 7
class
(LIdeal‘𝑟) |
| 30 | 27, 18, 29 | wral 3061 |
. . . . . 6
wff
∀𝑏 ∈
(LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) |
| 31 | 30, 21, 29 | wral 3061 |
. . . . 5
wff
∀𝑎 ∈
(LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) |
| 32 | 9, 31 | wa 395 |
. . . 4
wff (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖))) |
| 33 | 32, 4, 29 | crab 3436 |
. . 3
class {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))} |
| 34 | 2, 3, 33 | cmpt 5225 |
. 2
class (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |
| 35 | 1, 34 | wceq 1540 |
1
wff PrmIdeal =
(𝑟 ∈ Ring ↦
{𝑖 ∈
(LIdeal‘𝑟) ∣
(𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |