Detailed syntax breakdown of Definition df-prmidl
Step | Hyp | Ref
| Expression |
1 | | cprmidl 31512 |
. 2
class
PrmIdeal |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | crg 19698 |
. . 3
class
Ring |
4 | | vi |
. . . . . . 7
setvar 𝑖 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑖 |
6 | 2 | cv 1538 |
. . . . . . 7
class 𝑟 |
7 | | cbs 16840 |
. . . . . . 7
class
Base |
8 | 6, 7 | cfv 6418 |
. . . . . 6
class
(Base‘𝑟) |
9 | 5, 8 | wne 2942 |
. . . . 5
wff 𝑖 ≠ (Base‘𝑟) |
10 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
11 | 10 | cv 1538 |
. . . . . . . . . . . 12
class 𝑥 |
12 | | vy |
. . . . . . . . . . . . 13
setvar 𝑦 |
13 | 12 | cv 1538 |
. . . . . . . . . . . 12
class 𝑦 |
14 | | cmulr 16889 |
. . . . . . . . . . . . 13
class
.r |
15 | 6, 14 | cfv 6418 |
. . . . . . . . . . . 12
class
(.r‘𝑟) |
16 | 11, 13, 15 | co 7255 |
. . . . . . . . . . 11
class (𝑥(.r‘𝑟)𝑦) |
17 | 16, 5 | wcel 2108 |
. . . . . . . . . 10
wff (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 |
18 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
19 | 18 | cv 1538 |
. . . . . . . . . 10
class 𝑏 |
20 | 17, 12, 19 | wral 3063 |
. . . . . . . . 9
wff
∀𝑦 ∈
𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 |
21 | | va |
. . . . . . . . . 10
setvar 𝑎 |
22 | 21 | cv 1538 |
. . . . . . . . 9
class 𝑎 |
23 | 20, 10, 22 | wral 3063 |
. . . . . . . 8
wff
∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 |
24 | 22, 5 | wss 3883 |
. . . . . . . . 9
wff 𝑎 ⊆ 𝑖 |
25 | 19, 5 | wss 3883 |
. . . . . . . . 9
wff 𝑏 ⊆ 𝑖 |
26 | 24, 25 | wo 843 |
. . . . . . . 8
wff (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖) |
27 | 23, 26 | wi 4 |
. . . . . . 7
wff
(∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) |
28 | | clidl 20347 |
. . . . . . . 8
class
LIdeal |
29 | 6, 28 | cfv 6418 |
. . . . . . 7
class
(LIdeal‘𝑟) |
30 | 27, 18, 29 | wral 3063 |
. . . . . 6
wff
∀𝑏 ∈
(LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) |
31 | 30, 21, 29 | wral 3063 |
. . . . 5
wff
∀𝑎 ∈
(LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) |
32 | 9, 31 | wa 395 |
. . . 4
wff (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖))) |
33 | 32, 4, 29 | crab 3067 |
. . 3
class {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))} |
34 | 2, 3, 33 | cmpt 5153 |
. 2
class (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |
35 | 1, 34 | wceq 1539 |
1
wff PrmIdeal =
(𝑟 ∈ Ring ↦
{𝑖 ∈
(LIdeal‘𝑟) ∣
(𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |